Sample Programs
Sample Programs
[bookmark: _GoBack]Vernon Bernard Hester distributes all software on an "AS IS" basis without warranty. Vernon Bernard Hester shall not be liable and/or responsible to the purchaser with respect to liability, loss, and/or damage caused and/or alleged to be caused directly or indirectly by the use of this software, that includes but is not limited to any interruption of service, loss of business, and/or anticipatory profits, and/or consequential damage resulting from use of this software.

MULTIDOS
Copyright (c) 1981, 1982 Cosmopolitan Electronics Corporation, and
Copyright 1991, 1994, 1997, 1998, 2004, 2011 – 2023 by Vernon B. Hester

ESOTERIC
Copyright 1998 - 2023 by Vernon B. Hester

SUPERBASIC
Copyright (c) 1981, 1982 Cosmopolitan Electronics Corporation, and
Copyright 19911998, 2006 - 2023 by Vernon B. Hester

ESOBASIC
Copyright 1998 - 2023 by Vernon B. Hester

REFERENCE MANUAL
Copyright (c) 1984, 1985 by Cosmopolitan Electronics Corporation, and
Copyright 1991, 1993, 1994, 1997, 1998, 2010, 2011 – 2023 by Vernon B. Hester

TRS80® is a registered trademark of Tandy Corporation

TRSDOS® is a registered trademark of Tandy Corporation

INTRODUCTION. .0
	BACKING UP MULTIDOS .1
	MANUAL NOTATION .2
	COMMANDS. .2
	 Multiple. .3
	 Repeat. .3
	 Quick directory .4
	 MINIDOS .4
	 Keyboard (JKL, and HJK) .6
	FILESPECS .7
	MULTIDOS SYSTEM DISK. .9

LIBRARY COMMANDS. 11
	Append. 12					Attrib. 13
	Auto. 14					Blink 16
	Boot. 16					Build 16
	Cat 19					Cdir. 19
	Clear 20					Clock 20
	Clrdsk. 20					Cls 20
	Comp. 20					Config. 21
	Copy. 26					Date. 27
	Ddam. 27					Dead. 27
	Debug 28					Device. 32
	Dir 33					Do. 35
	Dump. 35					Fmap. 36
	Forms 37					Free. 38
	Lib 39					Link. 39
	List. 40					Load. 40
	Patch 40					Prot. 41
	Remove. 41					Rename. 42
	Reset 42					Restor. 42
	Route 43					Screen. 43
	Setcom. 44					Spool 44
	Time. 45					Topmem. 45
	Type. 46					Verify. 46
	V64 46					V80 46

SYSTEM UTILITIES. 47
	BACKUP/CMD. 47					CAT/CMD 50
	CDIR/CMD. 50					CONVERT/CMD 50
	COMP/CMD. 51					COPY/CMD. 51
	CUSTOM/CMD. 53					DBLFIX/CMD. 53
	DDT/CMD 53					FIXDATE/CMD 54
	FMAP/CMD. 54					FORMAT/CMD. 55
	GR/CMD. 58					HELP/CMD. 58
	INSTALL/CMD 59					LO/CMD. 60
	MEM/CMD 62					MEMDISK/CMD 63
	MODULE/CMD. 64					MONITOR/CMD 65
	PCOPY/CMD 66					PRT/CMD 74
	RA/CMD. 75					RS/CMD. 77
	SETCOM/CMD. 78					SHOW/CMD. 78
	SPOOL/CMD 78					SSAVER/CMD. 79
	SYSGEN/CMD. 80					Tx/CMD. 84
	TAPE/CMD. 84					VFU/CMD 85
	ZAP/CMD 90

DIRECTORY STRUCTURE . 93

DOS ERRORS. 98

SUPERBASIC. .101
	Initialization.101					BASIC * (Recover program) . . .101
	BASIC ! (Capture program) . . .102					BASIC # (Transfer program). . .102
	Single Keystroke Commands . . .103					Single Character Commands . . .103
	@ (cross reference)104					A (automatic lines)105
	B (resolve labels).106					C (continue after stop)106
	D (delete lines).107					E (edit).107
	F (find ASCII text)107					G (global edit)108
	I (insert lines automatically) 112					L (list program lines).112
	M (move a program line)112					N (duplicate program line[s]) .112
	O (renumber).113					P (list a page)115
	Basic Key words115					&H and &X116
	ASC117					BIN$.117
	CALL.117					CLEAR118
	CLS118					CMD"B".119
	CMD"C".119					CMD"D".119
	CMD"E".119					CMD"K".119
	CMD"L".120					CMD"O".120
	CMD"P".120					CMD"Q".121
	CMD"R".122					CMD"S".122
	CMD"T".122					CMD"U".122
	CMD"V".122					CMD"W".123
	CMD"X".123					CMD"Y".123
	CMD"fffff".123					DEF FN.124
	DEF USR125					ERASE125
	ERROR126					EXIT.126
	HEX$.126					INPUT127
	INSTR128					LABEL128
	LINE INPUT.129					MID$=130
	NEW130					ON STOP GOTO.130
	PRINT131					RANDOM.131
	RESTORE131					RND131
	SORT.132					SOUND135
	TAB(#135					TROFF135
	TRON.135					USR138
	WPEEK139					ZERO.139

BBASIC.140					Background Argument Printing. .142
	CMD"I".143					CMD"N".143
	CMD"O".143					Stacking Programs144

SUPERBASIC FILE MANIPULATION and FILE ACCESS.145
	CHAIN145					KILL.145
	LOAD.145					MERGE145
	NAME.146					RUN146
	SAVE.146					OPEN.147
	CLOSE148					INPUT#.148
	LINEINPUT#.148					PRINT#.149
	FIELD149					MKD$.150
	MKI$.150					MKS$.150
	CVI150					CVD150
	CVS150					LSET.151
	RSET.151					PUT152
	GET153					EOF153
	LOC153					LOF153

BASIC ERRORS. .154

ENTRY POINTS. .161

GLOSSARY. .185

INDEX .189

ZAPS. .193
TABLE OF CONTENTS
TABLE OF CONTENTS

ii
i
MULTIDOS
MULTIDOS is the only TRS80® disk operating system (DOS) developed that uses a similar format in communicating among the TRS80® MODEL I, MODEL III, MODEL 4, and the LOBO MAX80, i.e., some machine language programs and most BASIC programs will run under MULTIDOS in all four machines. BASIC programs that contain PEEK, POKE, USR, CMD, CLOAD, and CSAVE will probably have to be changed.

"TYPE" is used to classify the operating systems, and is determined by four factors:

1	The type of address marks used to identify the directory. U indicates USER DEFINED. D indicates DELETED, and R (reversed) indicates that the directory has normal address marks and the files have DELETED address marks.
2	The use of pseudological tracks. P indicated pseudological tracks (referred to as LUMPS by NEWDOS/80v2). T indicates true tracks.
3	Track zero formatted differently than the balance of the diskette. Z indicates the same density. X indicates a different density.
4	The lowest sector number on each track. 0 = Zero. 1 = One.

																								 MODEL I				MODEL III/4, MAX80
MODEL		SYSTEM			DENSITY		Format "TYPE"			READ	WRITE				READ		WRITE
	I			TRSDOS®			SINGLE			A			UTZ0			OK		NOTE 1			NOTE 2	NOTE 2
	I			NEWDOS			SINGLE			A			UTZ0			OK		NOTE 1			NOTE 2	NOTE 2
	I			VTOS				SINGLE			A			UTZ0			OK		NOTE 1			NOTE 2	NOTE 2
	I			ULTRADOS		SINGLE			A			UTZ0			OK		NOTE 1			NOTE 2	NOTE 2
	I			NEWDOS/80v1	SINGLE			A			UTZ0			OK		NOTE 1			NOTE 2	NOTE 2
	I			DOSPLUS			SINGLE			A			UTZ0			OK		NOTE 1			NOTE 2	NOTE 2
	I			NEWDOS/80v2	SINGLE			A			UTZ0			OK		NOTE 1			NOTE 2	NOTE 2
	I			LDOS				SINGLE			B			DTZ0			OK		OK					OK			OK
	I			MULTIDOS"S" SINGLE			B			DTZ0			OK		OK					OK			OK
	I			DBLDOSTM			DOUBLE			C			DPX0			OK		OK					OK			OK
	I			VTOS				DOUBLE			C			DPX0			OK		OK					OK			OK
	I			NEWDOS/80v1	DOUBLE			C			DPX0			OK		OK					OK			OK
	I			NEWDOS/80v2	DOUBLE			C			DPX0			OK		NOTE 3			OK			OK
	I			MULTIDOS"P" DOUBLE			C			DPX0			OK		OK					OK			OK
	I			DOSPLUS			DOUBLE			D			DTX0			OK		OK					OK			OK
	I			MULTIDOS"D"	DOUBLE			D			DTX0			OK		OK					OK			OK
	I			LDOS				DOUBLE			G			DTZ0			OK		OK					OK			OK
	I			TRSDOS®			DOUBLE			E			DTX1			NO		NO					NO			NO
 III		TRSDOS®			DOUBLE			F			RTZ1			VFU		NO					VFU			NO
 III		DOSPLUS			DOUBLE			G			DTZ0			OK		OK					OK			OK
 III		LDOS				DOUBLE			G			DTZ0			OK		OK					OK			OK
 III		NEWDOS/80v2	DOUBLE			H			DPZ0			OK		NOTE 3			OK			OK
 III		MULTIDOS		DOUBLE			G			DTZ0			OK		OK					OK			OK
	4			TRSDOS®			DOUBLE			G			DTZ0			OK		OK					OK			OK
	4			DOSPLUS			DOUBLE			G			DTZ0			OK		OK					OK			OK
	4			MULTIDOS		DOUBLE			G			DTZ0			OK		OK					OK			OK
MAX80	LDOS				DOUBLE			G			DTZ0			OK		OK					OK			OK
MAX80	MULTIDOS		DOUBLE			G			DTZ0			OK		OK					OK			OK

VFU = VFU/CMD (or FU/CMD) can copy a file from these types.
NOTE 1:	These types will have their address marks changed from U to D.
NOTE 2:	Requires CONVERT/CMD to alter the directory address marks.
NOTE 3:	Must be updated with CAT (X) to enable MULTIDOS/ESOTERIC to know the track count because NEWDOS/80v2 does not always have a lockout table. Otherwise, MULTIDOS/ESOTERIC will attempt to write to a non-existent track.
INTRODUCTION
INTRODUCTION

Page 0
Page 0
BACKING UP MULTIDOS
The first thing that must be done with your MULTIDOS master diskette is make a backup. A blank diskette without the write protect notch covered is required for this procedure.

WRITE PROTECT THE MULTIDOS MASTER DISKETTE by placing a write protect tab over the notch (if your diskette already has the write protect notch covered, leave it on).

Turn on the computer, insert the MULTIDOS diskette into drive 0, and press the reset button.

When the diskette boots, the MULTIDOS banner is displayed and you are presented with the date and time prompt. Press <ENTER> or input today's date and time if you wish.

Key in BACKUP, then press <ENTER>.

Answer: Which logical drive contains the source diskette?

with 0.

Answer: Which logical drive for the destination diskette?

with a drive number having the same track capacity, if two or more drives are available, otherwise answer with 0.

The next prompt is: <ENTER> when the source disk is in logical drive 0.

Press <ENTER>. At this point BACKUP/CMD examines the source diskette for track count and density, then displays the cylinder count and the density.

Answer: Physical cylinders for the destination diskette (38 to 96)?

with <ENTER>. BACKUP/CMD formats the blank diskette, then duplicates the contents of the MULTIDOS master diskette.

If only one drive is used, BACKUP/CMD indicates when to insert the destination (blank) diskette and when to reinsert the source (MULTIDOS master) diskette.

During a one drive BACKUP, several diskette changes are required.

When BACKUP has completely duplicated the MULTIDOS master diskette,

Completed
Insert SYSTEM <ENTER>

is displayed. Press <ENTER>.

Place your MULTIDOS master diskette in a safe place, and create all future backups from the copy just produced.

MANUAL NOTATIONS
CAPITALS and punctuation must be keyed exactly as it appears in this manual.

A space represents at least one mandatory space. Single quotes enclose responses displayed on the video monitor.

Symbol				Meaning
<ENTER>				Press the "ENTER" key.
<BREAK>				Press the "BREAK" key.
<SPACE>				Press the "SPACEBAR".
<LF>					Press the "" key, the linefeed character.
<key>					Press the key that is labeled key.
filespec			A valid MULTIDOS file having the general form: filename/ext.password:drivespec
drivespec			A particular logical disk drive number (0 to 7).
Diskette			Refers exclusively to a floppy diskette.
Disk					Refers to a floppy diskette, hard disk, or memory disk.
command				Represents the MULTIDOS command you want to execute. Typically, commands may be either upper or lower case letters.
(parameters)	One or more arguments separated by commas that may be needed by the command. Some commands have no parameters. Most parameters are optional.
[]						brackets [] around any word in a command line indicate that the word is optional. The "[" and "]" are not keyed in.
...						Ellipses represent the repetition of an optional parameter.
{ }						Braces enclose manual remarks.

The term A and/or B implies inclusive or, i.e., either A or B or both.

The term A or B implies exclusive or, i.e., either A or B but not both.

This manual is intended for all versions of MULTIDOS. Whenever you see:
MODEL I, MODEL III, MAX-80, MODEL 4, and/or ESOTERIC, then the command and/or function is applicable to that particular version of MULTIDOS operating in the appropriate hardware or emulation.

MODEL I and MODEL III: <SHIFT0> is used to toggle between CAPSLOCK and upper/lower case.
MAX-80: <SHIFTCTRL> is used to toggle between CAPSLOCK and upper/lower case.
MODEL 4 and ESOTERIC: <CAPS> is used to toggle between CAPSLOCK and upper/lower case.

COMMANDS
Whenever the command prompt, 'MULTIDOS', is displayed, you are in the (DOS) command mode and you may enter a LIBRARY command, or the name of a system utility, or the name of an application program.

EXAMPLE:
		DIR<ENTER>

The command is terminated with <ENTER>. The letter's case in the command is disregarded unless a control byte, SM0, has a specified bit set. Refer to the Entry points for MULTIDOS section for the function of the bits in this byte.

MULTIPLE COMMANDS
Multiple DOS commands are executed one at a time if they are separated by commas immediately behind the command(s).

EXAMPLE:

		DIR 1, BASIC<ENTER>

		Executes the LIBRARY command DIR then loads and executes SUPERBASIC.

REPEAT COMMANDS
MULTIDOS repeats the last DOS command if <ENTER> is the first response to the command prompt and a comma does not follow the command.

EXAMPLE:

		DIR :1<ENTER>

After the command prompt is displayed, pressing <ENTER> as the first keystroke again displays the directory of the disk in logical drive 1 (Diskettes may be changed between the <ENTER>s).

This feature can be useful if a lengthy command is used to write to a write protected diskette. Simply write enable the diskette and press <ENTER> to repeat the aborted command.

A comma behind a command disables repeating the command with <ENTER>. <BREAK> and the LIBRARY command RESET also disable the last DOS command.

EXAMPLE:

		RESET,DIR 1<ENTER>

When this command is executed, RESET is performed; however, DIR 1 is ignored and the command RESET,DIR 1 is erased.

[bookmark: OLE_LINK1][bookmark: OLE_LINK2]EDITING COMMANDS (MAX-80, MODEL 4, and ESOTERIC)
Limited editing of commands are possible with <CTRLS>, <CTRLL>, and the left and right arrow keys. <CTRLS> is used to delete the character under the cursor. <CTRLL> is used to toggle between the insert and overstrike modes. The cursor is positioned with the use of the left and right arrow keys. To see the present command, one character at a time , press <>. To see the entire command, press <SHIFT>. Pressing <> does not erase the command; however, the command is terminated where <ENTER> is pressed (repeat: "the command is terminated where <ENTER> is pressed.").

QUICK DIRECTORY
MULTIDOS provides an easy method to display a directory by pressing the numbers 0 to 7 as the first character on the command line. For the Model I and Model III, you must do this before any other key is pressed. If you have pressed any other key(s), you must press <BREAK> instead of <> to position the cursor to the first position. For the MAX-80, Model 4, and ESOTERIC, you may use <> to position the cursor to the first position.

Let’s say you want to display the directory for drive 2. Simply press the <2> key.

If you have a two volume diskettes, side 1 can be displayed by pressing <SHIFT> number. e.g., for DIR :6' press <SHIFT6>

MINIDOS
[bookmark: OLE_LINK3]This feature enables you to interrupt a program while that program is executing and perform several selected commands before returning to the program without any changes in the program's state during this interruption.

MINIDOS is activated if both the following conditions are met:

			1. Interrupt service is active.
			2. Simultaneous depression of the <;> and <:> keys.

To exit MINIDOS:

			1. Press <BREAK> or
			2. Key <!> and <ENTER>

Upon exit an extraneous : and/or ; may be present.

MINIDOS commands require one letter and do not require a space between the letter and any parameters that may follow. However, spaces may be keyed in after the command letter.

EXAMPLE:

		D1<ENTER> is interpreted the same as D 1<ENTER>

There are six MINIDOS commands for the Model I, Model III, and ESOTERIC. There are seven MINIDOS commands for the MAX-80 and Model 4. The commands available are:

	C = COPY Duplicate a file from one mounted disk to another mounted disk.

			C fileone[:d] [to] filetwo[:d]<ENTER>

			NOTE: both filespecs are required.

	D = DIR Display the directory of the specified drivespec.

			Dd, DdI, DdS, D:d, D:dI, or D:dS<ENTER>

			d = 0 to 7 for the logical drive number.
					If d is omitted, then zero is used.
	 		I = display files with an invisible attribute.
	 		S = display files with an invisible and/or system attribute.

	K = KILL Remove the specified filespec.

			K filespec<ENTER>

	L = LIST List the specified filespec.

			L filespec<ENTER>

			The listing is suspended if <SPACE> is held down, or terminated if <BREAK> is pressed.

	M = DEBUG Enables DEBUG, except in command mode

			M<ENTER>

			This command enables DEBUG immediately; however, you cannot activate DEBUG until you exit MINIDOS.

	P = PRINT Send specified two digit decimal character to the printer.

			Pnn<ENTER>

			This command sends byte nn to the printer. Its main feature is to send control bytes, 0 to 31, to the printer without leaving the interrupted program in progress.

MAX-80 and MODEL 4
	V = VIDEO Flip the video format between 64X16 and 80X24.

			V<ENTER>

			This command clears the display then flips the video between the 64X16 format and the 80X24 format. If the present video format is 80X24, then V<ENTER> changes the video to 64X16. If the present video format is 64X16, then V<ENTER> changes the video to 80X24.

JKL	Screen dump to printer, excluding graphic characters.

		JKL = The simultaneous depression of the J, K, and L keys.

		This command sends the contents of the display to the device defined in the printer DCB. Graphic blocks are converted to periods. If graphic blocks are not to be converted to periods, then the HJK command, described below, should be used.

HJK	Screen dump to printer, including graphics characters.

		HJK = The simultaneous depression of the H, J, and K keys.

		This command is similar to the JKL command, except graphics blocks are sent to the printer instead of being converted to periods.

The ASCII Codes

DEC. HEX CHAR. DEC. HEX CHAR. DEC. HEX CHAR. DEC. HEX CHAR.

 0 00 NUL 32 20 SPACE 64 40 @ 96 60 `
 1 01 SOH 33 21 ! 65 41 A 97 61 a
 2 02 STX 34 22 " 66 42 B 98 62 b
 3 03 ETX 35 23 # 67 43 C 99 63 c
 4 04 EOT 36 24 $ 68 44 D 100 64 d
 5 05 ENQ 37 25 % 69 45 E 101 65 e
 6 06 ACK 38 26 & 70 46 F 102 66 f
 7 07 BEL 39 27 ' 71 47 G 103 67 g
 8 08 BS 40 28 (72 48 H 104 68 h
 9 09 HT 41 29) 73 49 I 105 69 i
 10 0A LF 42 2A * 74 4A J 106 6A j
 11 0B VT 43 2B + 75 4B K 107 6B k
 12 0C FF 44 2C , 76 4C L 108 6C l
 13 0D CR 45 2D 77 4D M 109 6D m
 14 0E SO 46 2E . 78 4E N 110 6E n
 15 0F SI 47 2F / 79 4F O 111 6F o
 16 10 DLE 48 30 0 80 50 P 112 70 p
 17 11 DC1 49 31 1 81 51 Q 113 71 q
 18 12 DC2 50 32 2 82 52 R 114 72 r
 19 13 DC3 51 33 3 83 53 S 115 73 s
 20 14 DC4 52 34 4 84 54 T 116 74 t
 21 15 NAK 53 35 5 85 55 U 117 75 u
 22 16 SYN 54 36 6 86 56 V 118 76 v
 23 17 ETB 55 37 7 87 57 W 119 77 w
 24 18 CAN 56 38 8 88 58 X 120 78 x
 25 19 EM 57 39 9 89 59 Y 121 79 y
 26 1A SUB 58 3A : 90 5A Z 122 7A z
 27 1B ESC 59 3B ; 91 5B [123 7B {
 28 1C FS 60 3C < 92 5C \ 124 7C |
 29 1D GS 61 3D = 93 5D] 125 7D }
 30 1E RS 62 3E > 94 5E ^ 126 7E ~
 31 1F US 63 3F ? 95 5F _ 127 7F ±

FILESPECS
When specifying a disk file the term "filespec" is used in this manual. A filespec with all the options would look like this:

				filename[/ext][.password][:drivespec][']

		filename is the name of the disk file. Valid filenames consist of at least one and not more than eight characters. The first character must be alphabetic, AZ, and the remaining characters can be alphabetic and/or numeric, AZ and/or 09. You cannot use TO as a MULTIDOS filename.

		/ext is an optional extension to the filename and consists of the slash character and at least one, but not more than three characters. The first of these characters must be alphabetic, and the remaining characters may be alphabetic and/or numeric. All file extensions, except /CMD, must be keyed in for proper identification of the file. More on this later.

		.password is an optional password and consists of a period and at least one, but not more than eight characters. The first of these characters must be alphabetic and the remaining may be alphabetic and/or numeric.

		:drivespec is an optional logical disk drive number, 0 to 7, preceded by a colon.

		' is a drivespec modifier to access side 1 of a diskette when it is configured as two volume.

The password is not part of a filespec's uniqueness. The following are interpreted as the same filespec:

			wonder.boy	wonder.woman	wonder.full

However, the drivespec makes a file unique. The following are interpreted as different filespecs:

			wonder:1	wonder:2	wonder:3

The following are filename extensions generally employed:

	/ASC		A BASIC program stored in ASCII form.
	/ASM		An assembly language source file.
	/BAS		A BASIC program stored in compressed format.
	/RIM		A file that is a direct copy of memory (RAM Image Memory).
	/CMD		A machine language file executable directly from DOS.
	/TXT		An ASCII text file (Typically sequential files).

To execute a file that ends with the /CMD extension, the /CMD extension is optional in the command mode. i.e., MULTIDOS inserts the extension /CMD if a filespec is entered without an extension.

EXAMPLE:

		BACKUP<ENTER>

MULTIDOS adds the extension /CMD to BACKUP, then loads and executes the file BACKUP/CMD.

To execute a file without an extension, append just the /, and MULTIDOS loads and executes the file without adding the default extension /CMD.

EXAMPLE:

		CREATE/<ENTER>

MULTIDOS loads and executes the file CREATE.

If a drivespec is not assigned, MULTIDOS searches all active drives, in ascending logical order, starting with logical drive 0 for the filespec entered. If a filespec is initialized (new file created) without a drivespec, MULTIDOS searches for the first active drive with the disk write enabled to initialize the file.

EXAMPLE:

		PROG:2<ENTER>

MULTIDOS looks for the file PROG/CMD on logical drive two.

EXAMPLE:

		PROG/<ENTER>

MULTIDOS searches the drives, in ascending logical order, then loads and executes the program PROG on the first drive PROG exists on. If PROG is on logical drives 3 and 4, the version on logical drive 3 is loaded and executed.

EXAMPLE:

		PROG/RAM<ENTER>

MULTIDOS searches the drives, in ascending logical order, then loads and executes the program PROG/RAM on the first drive PROG/RAM exists on. If PROG/RAM is on logical drives 3 and 4, the version on drive 3 is loaded and executed. If you want to load and execute the file PROG/RAM on logical drive 4, then PROG/RAM:4<ENTER> must be keyed on the command line.

MULTIDOS SYSTEM DISK
MULTIDOS requires specific DOS overlay (/DOL) files present on a MULTIDOS disk, mounted in logical drive 0, for proper operation. And MULTIDOS requires a MULTIDOS system disk to be in logical drive 0 to load and execute /CMD files from a MULTIDOS disk, a data disk, or an alien system diskette. MULTIDOS does not execute programs specifically written for an alien DOS, e.g., PROFILE III+.

Proper operation of certain MULTIDOS utilities does not require a MULTIDOS system disk to remain in logical drive 0. Specific system restraints are covered in the description for the particular utility in the SYSTEM UTILITIES section of this manual. MULTIDOS requires that a system disk be in logical drive 0 when any MULTIDOS utility is initially loaded and executed.

To remove system files, use the utility VFU/CMD (or FU/CMD) with the % parameter.

		VFU %<ENTER>

The % parameter enables VFU/CMD to access the /DOL and /EXT files.

A minimum system MULTIDOS disk contains the following six files:

SYSRES/SYS		is the executive program loaded during initialization. SYSRES/SYS's main function is to interface with the hardware being used. SYSRES/SYS contains the code for vectors to internal routines, drive control table (DCT), all I/O routines, program loader, file positioning, and system scratch pad. Once loaded during initialization, you may remove the diskette containing SYSRES/SYS, provided you have the corresponding (same version) /DOL files present on the replacement diskette. For ESOTERIC the file name is ESORES/SYS.

DIR/SYS				contains data about every file on the disk.

Command/DOL		is the command interpreter and also contains the code for some of the LIBRARY commands. See table on next page – indicated with C.

Open/DOL			contains the code to open and initialize a file.

Allocate/DOL	Allocate granules and positions a file to the fifth or greater segment.

Close/DOL 		contains the code to close and remove files.

Other MULTIDOS files are required to execute the balance of the LIBRARY commands and other functions. These files may be purged from your system diskette to obtain more room. However, once purged, these files cannot easily be recovered.

Error/DOL			Disk access related error library.

Debug/DOL			DEBUG file.

Minidos/DOL		Executor of MINIDOS. Minidos/DOL also contains the code to execute the system command CAT (MULTIDOS: 4419H).

LibraryN/EXT	N = 1, 2, or 3. Executors for LIBRARY commands. See table on next page.
	Library Command
	MODEL I
	MAX-80
	MODEL III
	MODEL 4
	Combo DOS
	ESOTERIC

	
	N
	Command
	N
	Command
	N
	Command
	N
	Command
	N
	Command
	N
	Command

	Append
	2
	1
	2
	1
	2
	1
	2
	1
	2
	1
	2
	1

	Attrib
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2

	Auto
	1
	3
	1
	3
	1
	3
	1
	3
	1
	3
	1
	3

	Blink
	C
	4
	C
	4
	C
	4
	C
	4
	
	
	C
	4

	Boot
	C
	5
	
	
	C
	5
	
	
	C
	4
	
	

	Build
	1
	6
	1
	5
	1
	6
	1
	5
	1
	5
	1
	5

	Cat
	
	
	3
	6
	
	
	3
	6
	
	
	3
	6

	Cdir
	
	
	3
	7
	
	
	3
	7
	
	
	3
	7

	Clear
	C
	7
	C
	8
	C
	7
	C
	8
	
	
	C
	8

	Clock
	C
	8
	C
	9
	C
	8
	C
	9
	
	
	C
	9

	Clrdsk
	2
	9
	2
	10
	2
	9
	2
	10
	
	
	2
	10

	Cls
	C
	10
	C
	11
	C
	10
	C
	11
	C
	6
	C
	11

	Comp
	
	
	
	
	
	
	
	
	
	
	1
	12

	Config
	2
	11
	2
	12
	2
	11
	2
	12
	2
	7
	2
	13

	Copy
	
	
	
	
	
	
	
	
	
	
	1
	14

	Date
	1
	12
	1
	13
	1
	12
	1
	13
	1
	8
	1
	15

	Ddam
	2
	13
	
	
	
	
	
	
	
	
	
	

	Dead
	C
	14
	
	
	C
	13
	
	
	C
	9
	
	

	Debug
	C
	15
	C
	14
	C
	14
	C
	14
	C
	10
	C
	16

	Device
	1
	16
	1
	15
	1
	15
	1
	15
	1
	11
	1
	17

	Dir
	1
	17
	3
	16
	1
	16
	3
	16
	1
	12
	3
	18

	Do
	1
	18
	1
	17
	1
	17
	1
	17
	1
	13
	1
	19

	Dump
	1
	19
	1
	18
	1
	18
	1
	18
	1
	14
	1
	20

	Fmap
	
	
	3
	19
	
	
	3
	19
	
	
	3
	21

	Forms
	2
	20
	2
	20
	2
	19
	2
	20
	2
	15
	2
	22

	Free
	1
	21
	3
	21
	1
	20
	3
	21
	1
	16
	3
	23

	Lib
	C
	22
	C
	22
	C
	21
	C
	22
	C
	17
	C
	24

	Link
	1
	23
	1
	23
	1
	22
	1
	23
	1
	18
	1
	25

	List
	1
	24
	1
	24
	1
	23
	1
	24
	1
	19
	1
	26

	Load
	C
	25
	C
	25
	C
	24
	C
	25
	C
	20
	C
	27

	Patch
	2
	26
	2
	26
	2
	25
	2
	26
	2
	21
	2
	28

	Prot
	2
	27
	2
	27
	2
	26
	2
	27
	2
	22
	2
	29

	Remove
	2
	28
	2
	28
	2
	27
	2
	28
	2
	23
	2
	30

	Rename
	2
	29
	2
	29
	2
	28
	2
	29
	2
	24
	2
	31

	Reset
	1
	30
	1
	30
	1
	29
	1
	30
	1
	25
	1
	32

	Restor
	2
	31
	2
	31
	2
	30
	2
	31
	2
	26
	2
	33

	Route
	1
	32
	1
	32
	1
	31
	1
	32
	1
	27
	1
	34

	Screen
	C
	33
	C
	33
	C
	32
	C
	33
	C
	28
	C
	35

	Setcom - Model III
	
	
	
	
	2
	33
	
	
	2
	29a
	
	

	Setdir - Model I
	
	
	
	
	
	
	
	
	
	29b
	
	

	Spool
	
	
	1
	34
	
	
	2
	34
	
	
	2
	36

	Time
	1
	34
	1
	35
	1
	34
	1
	35
	1
	30
	1
	37

	Topmem
	1
	35
	1
	36
	1
	35
	1
	36
	1
	31
	1
	38

	Type
	
	
	C
	37
	C
	36
	C
	37
	
	
	C
	39

	Verify
	C
	36
	C
	38
	C
	37
	C
	38
	C
	32
	C
	40

	V64
	
	
	C
	39
	
	
	C
	39
	
	
	
	

	V80
	
	
	C
	40
	
	
	C
	40
	
	
	
	

	
	

	TOTAL
	36
	40
	37
	40
	32
	40

	
	

	Command/DOL
	11
	12
	12
	12
	8
	10

	Library1/EXT
	14
	13
	14
	12
	14
	14

	Library2/EXT
	11
	10
	11
	11
	10
	11

	Library3/EXT
	0
	5
	0
	5
	0
	5

INTRODUCTION
INTRODUCTION

Page 10
Page 9
MULTIDOS and ESOTERIC LIBRARY commands are usually entered when the 'MULTIDOS' or 'ESOTERIC' prompt is displayed. Also, LIBRARY commands can be executed from SUPERBASIC or an assembly language routine (please consider the memory usage of the LIBRARY command see LIB).

A mandatory space is required after all LIBRARY commands if there are additional parameters and/or arguments.

EXAMPLE:
				DATE<ENTER>						{No space required. No arguments given}

	This displays the current RAM date in the format mm/dd/yy.

				DATE 11/08/15<ENTER>	{At least one space after DATE}

	This establishes November 8, 2015 as the current RAM date.

Multiple LIBRARY commands are executed, in sequence, if a comma follows the last character of a given command.

EXAMPLE:
				DIR (A),DIR 2(A),DIR 1(A)<ENTER>

	This multiple command displays the <A>llocation directory for logical drives 0, 2, and 1, in that order.

				RENAME NEW/CMD:2 TO OLD/CMD, DIR 2<ENTER>

	This multiple command renames NEW/CMD on the disk in logical drive 2 to OLD/CMD, then displays the directory of the disk in logical drive 2.

Whenever the term, switch, is part of a LIBRARY command line, switch represents an ON/YES or OFF/NO condition. If switch is omitted, then ON/YES is used.
MULTIDOS and ESOTERIC accept the following responses:
		(Y)		= yes, on				(N)		= no, off
		(YES)	= yes, on				(NO)	= no, off
		(ON)	= yes, on				(OFF)	= no, off

Please note the required parentheses surrounding the switch parameter.

EXAMPLE:
				CLOCK (N)<ENTER>											{suppresses the clock display}
				CLOCK (Y)<ENTER> or CLOCK<ENTER>			{displays the clock}

Whenever a library command syntax includes an (H) parameter, then a brief help is displayed.

				REMOVE (H)<ENTER>

			Displays
				REMOVE FILE<ENTER>

				Resets FILE active byte in directory

APPEND	Append a file to the end of another file.

				APPEND filespec1 [to]filespec2<ENTER>
				APPEND (H)<ENTER>

APPEND adds filespec1 to the end of filespec2, increasing the length of filespec2 by the length of filespec1, leaving filespec1 unaffected. The disk with filespec2 must not be write protected and have sufficient space to lengthen filespec2 by the length of filespec1.

To append BASIC programs, both files must be stored in ASCII, and the highest line number in filespec2 must be lower than the lowest line number in filespec1 for proper execution of the appended BASIC program.

EXAMPLE:
				10 REM CLASS1/ASC
				20 DATA "ENGLISH","FRENCH","GERMAN","GREEK","PIG LATIN"

				200 REM CLASS2/ASC
				250 DATA "SOCIAL SCIENCE","HISTORY","CHEMISTRY","ALGEBRA"

				APPEND CLASS2/ASC to CLASS1/ASC<ENTER>

	The file CLASS1/ASC has the contents of file CLASS2/ASC added to the end of the original contents of CLASS1/ASC, and the file CLASS2/ASC remains unchanged. Here is the results of the APPEND.

	CLASS1/ASC after CLASS2/ASC is appended:

				10 REM CLASS1/ASC
				20 DATA "ENGLISH","FRENCH","GERMAN","GREEK","PIG LATIN"
				200 REM CLASS2/ASC
				250 DATA "SOCIAL SCIENCE","HISTORY",CHEMISTRY",ALGEBRA"

	CLASS2/ASC after it is appended to CLASS1/ASC:

				200 REM CLASS2/ASC
				250 DATA "SOCIAL SCIENCE","HISTORY",CHEMISTRY",ALGEBRA"
						{file unchanged}

APPEND cannot append files from two diskettes to be mounted in the same logical drive. To append files, all disks must be mounted.

EXAMPLE:
				APPEND NEXT/ASC:2 BEFORE/ASC:1<ENTER>

	The file NEXT/ASC on the disk in logical drive 2 will be appended to the file BEFORE/ASC on the disk in logical drive 1.

ATTRIB	Assign a filespec's attributes.

				ATTRIB filespec (param[,param...])<ENTER>
				ATTRIB (H)<ENTER>

This command sets file protection attributes.

		PARAM			MEANING

		I					the file is invisible to the normal directory command.
		V					the file is visible to the normal directory command.
		A=pw			pw = The new ACCESS password.
		P=level		level = The protection level (detailed below).

The protection level is entered as words, e.g., READ, EXEC, etc.

		LEVEL 		ACCESS PASSWORD PRIVILEGE
		KILL or KI							TOTAL ACCESS (lowest level)
		RENAME or NA or REN			RENAME, WRITE, READ, EXECUTE
		WRITE or WR							WRITE, READ, EXECUTE
		READ or RE							READ, EXECUTE
		EXEC or EX							EXECUTE ONLY
		NONE or NO							LOCKED OUT (highest level)

If a file has a protection level of WRITE, then the file can be accessed by any of the levels equal to or greater than WRITE with the ACCESS password. The file cannot be RENAMEd or REMOVEd without the UPDATE password.

All files have an ACCESS and UPDATE password. The default ACCESS password is 8 spaces, and the default UPDATE password is the disk's master password. MULTIDOS and ESOTERIC are shipped with the master password set to PASSWORD (upper case). With the ACCESS password set to 8 spaces (blank), a password is not required to access the file. The LIBRARY command DIR displays a P after the filename if a protection level is set.

EXAMPLE:
				ATTRIB FILEA/BAS (A=USER,P=READ)<ENTER>

	FILEA/BAS requires the ACCESS password, USER, to execute, load, and/or read. However, to REMOVE, RENAME, and/or WRITE to the file, the UPDATE password must be used. e.g., RENAME FILEA/BAS.PASSWORD to FILEA1/BAS<ENTER>.

EXAMPLE:
				ATTRIB FILEB/BAS (V)<ENTER>

	FILEB/BAS is visible and is displayed when the LIBRARY command DIR is executed.

NOTE: The password TERRI can be used to access and/or update any file.

AUTO		Automatic command upon powerup/reboot.

				AUTO[[!][#]DOSCMD][<LF>DOSCMD]<ENTER>
				AUTO (H)<ENTER>

DOSCMD is any valid MULTIDOS or ESOTERIC LIBRARY command or a filespec for an executable command file. The AUTO command stores up to 31 characters after the mandatory space following AUTO onto the GAT sector of the directory. If more than 31 characters are entered, no error message is printed; however, only the first 31 characters are stored. Because the AUTO command writes to the directory, the disk must not be write-protected when an AUTO command is established and/or removed.

EXAMPLE:
				AUTO DIR<ENTER>

	On future powerups/reboots the LIBRARY command DIR is executed after 'DIR' appears on the display.

AUTO provides for automatic operation of one or more MULTIDOS/ESOTERIC commands or executable command files upon powerup/reboot. Multiple AUTO commands require a <LF> between each command or filespec to be executed upon powerup/reboot.

EXAMPLE:
				AUTO DIR<LF>
				FREE<LF>
				BASIC<ENTER>

	On subsequent powerup/reboots, MULTIDOS or ESOTERIC displays 'DIR', executes the LIBRARY command DIR, displays 'FREE', executes the LIBRARY command FREE, displays 'BASIC', and executes the file BASIC/CMD.

MULTIDOS and ESOTERIC accept a multiple command for an AUTO command. The multiple command is displayed once.

EXAMPLE:
				AUTO DIR,FREE,BASIC<ENTER>

	On subsequent powerup/reboots, MULTIDOS or ESOTERIC displays 'DIR,FREE,BASIC', executes the LIBRARY command DIR, executes the LIBRARY command FREE, and executes the file BASIC/CMD.

An AUTO command is removed if only <ENTER> follows AUTO.

EXAMPLE:
				AUTO<ENTER>

	This removes an AUTO command, provided the diskette in logical drive zero is write enabled.

Once an AUTO command is set up, it is often desirable to suppress the AUTO command during subsequent powerup/reboots. To suppress an AUTO command hold down the <ENTER> key during the powerup/reboot sequence. On the other hand, you may want an AUTO command to execute without the ability to suppress the AUTO command. To inhibit the suppression of an AUTO command, key in an ! as the first character after the mandatory space following AUTO.

EXAMPLE:
				AUTO !BASIC<ENTER>

	On subsequent powerups, the file BASIC/CMD executes after 'BASIC' is displayed, whether the <ENTER> key is held down or not.

You can make an AUTO command invisible if a # is placed in front of the first command.

EXAMPLE:
				AUTO #BASIC<ENTER>

	On subsequent powerups, the file BASIC/CMD executes, but BASIC is not displayed on the screen.

To have an AUTO command that cannot be suppressed and is invisible, key both the ! and # (any order) before the command. However, to suppress the date prompt, key the ! character first.

When setting up AUTO commands, you may wish to observe the results of the AUTO command and change it as necessary, without rebooting the computer. To execute an AUTO command without rebooting, key AUTO %<ENTER>. AUTO % converts a multiple AUTO command to a multiple command AUTO.

To query an AUTO command without rebooting the computer, key AUTO ?<ENTER>.

RULES FOR AUTO COMMANDS:
 1.	If BASIC is part of an AUTO command, BASIC must be the last command.
 2.	If a DO file is part of an AUTO command, then the DO file must be the last command.

EXAMPLE:
				AUTO DO STARTUP,DIR 1<ENTER>

	This AUTO command is incorrect ── the DO file is not the last command. The command DIR 1 does not execute. You should include DIR 1 in the DO file, or rearrange the AUTO command to:

				AUTO DIR 1,DO STARTUP<ENTER>

BLINK		Disable or enable the blinking cursor.

				BLINK[switch]<ENTER>

This command enables the blinking cursor when switch is ON/YES, or disables the blinking cursor when switch is OFF/NO.

EXAMPLE:
				BLINK<ENTER>				{Enables the blinking cursor}
				BLINK (OFF)<ENTER>	{Disables the blinking cursor}

MODEL I and MODEL III
BOOT		Reset the computer.

				BOOT<ENTER>

	This command performs a software reset. BOOT requires no arguments and/or parameters. Anything following BOOT is ignored.

BUILD		Create a DO file.

				BUILD filespec [(A)]<ENTER>
				BUILD (H)<ENTER>

BUILD creates a disk file to store a series of keystrokes for execution by the DO command. The data in the disk file is interpreted by the DO command as keyboard entries. BUILD overwrites the filespec unless the A parameter is specified. If the A parameter is specified, then BUILD appends the input to the end of filespec.

EXAMPLE:
				BUILD STARTUP<ENTER>			{Build input overwrites STARTUP.}
				BUILD STARTUP (A)<ENTER>	{Build input appends to the end of STARTUP.}

To BUILD a DO file, follow these steps:

 1.	Key in BUILD filespec<ENTER>.
 2.	When the prompt 'Build input' appears, key in (up to 255 characters per build line) the keystrokes desired for DO execution. <ENTER> terminates a build line and stores an <ENTER> in the file.
 3.	Repeat step 2 to store all of the desired keystrokes.
 4.	When the next 'Build input' appears press <BREAK> to close the file.

Although BUILD accepts 255 characters per line, the command buffer can hold only 79 characters. The 255 byte line was incorporated into BUILD to accept long comments (see the % explanation on the next page.)

BUILD has three control characters: $, %, and &. These control characters are used to display a message, suppress video and provide you with a partial prompt or understood prompt. These control characters are recognized only if they are the first character in a BUILD line.

If the $ character is the only input in a BUILD line, then the video is suppressed and the DO file continues. If text follows the $ character, then the text is put in the command buffer and displayed without the terminating <ENTER>. This should be used for completing the last command in a DO file.

EXAMPLE:
				Build input
				$<ENTER>		{suppress video}

	Suppresses video output and continues the DO file. The video display is turned on whenever a DO file is complete. Although MULTIDOS and ESOTERIC nest DO files, video output is enabled when any DO file is complete regardless of the DO file that suppressed the display.

The % character is BUILD's <BREAK> and comment character. If the BUILD line only consists of a % character, then a <BREAK> is entered into the DO file. If additional text follows the % character, then the text is treated as comment text and is displayed but not put in the command buffer. You can insert linefeeds between individual lines of a large comment, because BUILD allows 255 characters for each input line (keep in mind that the command buffer can only handle 79 characters).

EXAMPLE:
				%We the people of the United States, in Order to form a more<LF>
				Perfect Union, establish Justice, insure domestic Tranquility,<LF>
				Provide for the common defense, promote the general Welfare,<ENTER>
				%And secure the Blessings of Liberty to ourselves and our<LF>
				Posterity, do ordain and establish this Constitution for the<LF>
				United States of America.<ENTER>

The & character enables you to input responses while a DO file is executing. If text follows the & character, then the text is input into the command buffer and is expected to be part of the response.

EXAMPLES:
				Build input
				%Enter a DOS command.<ENTER>
				Build input
				&<ENTER>

	The DO file prints 'Enter a DOS command.' and waits for your input

				Build input
				&DIR <ENTER>

	The DO file prints 'DIR', places "DIR " into the command buffer, and waits for your input.

Example of BUILDing a file for DO execution:

		BUILD BLAST<ENTER>
		CLS<ENTER>
		%LOADING BASIC<ENTER>
		BASIC 61440<ENTER>
		CLS<ENTER>
		%GET READY FOR A BLAST!<ENTER>
		RUN"BLAST/BAS"<ENTER>
		<BREAK>

When DO BLAST is entered from the command prompt:

The screen clears.															{CLS}
The message 'LOADING BASIC' is displayed.				{%LOADING BASIC}
BASIC is executed with memory set to 61440.			{BASIC 61440}
The screen clears.															{CLS}
The message 'GET READY FOR A BLAST!' appears.		{%GET READY FOR A BLAST!}
The program BLAST/BAS loads and executes.				{RUN"BLAST/BAS"}

BUILD control characters are summarized in the following table:

	CONTROL CHARACTER		ACTION/DESCRIPTION
		$									suppress video output and continue.
		%									insert <BREAK> in DO file.
		%zzzzz						display zzzzz and continue.
		&									pauses DO file for user command.
		&zzzzz						pauses DO file for completion of command zzzzz.

		ACTION/DESCRIPTION 	HOW TO
		To display a message and continue:													%Message<ENTER>
		To suppress video output and continue:											$<ENTER>
		To display a message, suppress video output, and continue:	%Message<ENTER>
																																$<ENTER>
		To input a command:																					&<ENTER>
		To complete a command:																			&command<ENTER>
		Final incomplete command for a DO file:											$command<ENTER>

The final command syntax enables you to receive the 'MULTIDOS' prompt when the command is complete (instead of pressing <BREAK> to receive the prompt).

CAT			Display a directory of a TRS80® disk.
CAT/CMD: MODEL I and MODEL III

				CAT[[[]mask[!mask…]][[:]d] ([A][,I][,P][,R][,S][,T][,X])]<ENTER>
				CAT (H)<ENTER> (MAX-80, MODEL 4, and ESOTERIC)

			 mask = wildcard mask. See the LIBRARY command DIR for the explanation of mask.
					d = logical drive number
					A = disk map of files.
					I = display invisible files (displayed with an I following the filename).
					P = send display to printer also.
					R = display removed files (displayed with an R following the filename).
					S = display system files (displayed with an S following the filename).
					T = perform autoskip and/or autoside configuration without display.
					X = write DCT parameters to the GAT sector of NEWDOS/80 disks.

CAT[/CMD] displays the directory on practically any TRS80® disk, including Model I, Model III, Model 4, and MAX80 disks, regardless of the address marks, density, sector/granule format, and performs auto skip and/or auto side configuration.

CAT[/CMD] sets bit 5 of DCT+1, locking the DCT for the logical drive thus disabling the default sector/granule format and automatic data recognition (ADR) if the target diskette has a special format. Special formats include user created and NEWDOS/80 diskettes with the GPL greater than two. Bit 5 of DCT+1 is reset if the target diskette is a normal MULTIDOS, ESOTERIC, or any LDOS formatted diskette.

The X parameter updates the GAT sector of a NEWDOS/80 diskette with the logical tracks (LUMPS) in relative byte 0CCH, and the number of physical tracks in relative byte 0CDH to ensure the entire NEWDOS/80 disk space can be used when MULTIDOS or ESOTERIC has to write to the NEWDOS/80 diskette. NEWDOS/80 doesn't care that these two bytes are set to a nonzero values. If the X parameter is used to update these two bytes, the affected disk can function normally in a NEWDOS/80 environment. MULTIDOS and ESOTERIC limit the tracks accessed if the bytes at 0CCH and 0CDH are zero by prematurely indicating a full diskette to avoid writing to a nonexisting track.

CDIR		Zero unused directory entries.
CDIR/CMD: MODEL I and MODEL III

				CDIR[[:]d]<ENTER>
				CDIR (H)<ENTER> (MAX-80, MODEL 4, and ESOTERIC)
				CDIR[[:]d][(CLEAR[,C=cc][,D=dc])]<ENTER> (MODEL I and MODEL III)

					cc = cylinder count for floppies
					dc = directory cylinder

CDIR[/CMD] zeros unassigned directory entries. When a file is REMOVEd, MULTIDOS and ESOTERIC simply reset a bit to indicate the directory entry is available. The LIBRARY command RESTOR, simply sets this bit. CDIR[/CMD] completely zeroes the entire 32byte directory entry, thus preventing any recovery of a REMOVEd file via RESTOR. MODEL I and MODEL III: CDIR (CLEAR) is used to remove all files except DIR/SYS and BOOT/SYS. This can be used instead of reformatting a known good diskette. Use this powerful command with extreme caution. If the target diskette is a floppy, then the number of cylinders is obtained from the GAT sector unless C=nn is specified.

CLEAR		Zero Random Access Memory (RAM).

				CLEAR<ENTER>

CLEAR zeroes RAM from 5200H (4200H if ESOTERIC) to TOPMEM. If the contents of TOPMEM is FDFFH, then CLEAR sets all bytes from 5200H (4200H if ESOTERIC) through FDFFH to 00.

CLOCK		Enable or disable the real time clock display.

				CLOCK[switch]<ENTER>

The ON switch displays the clock in the top right of the video. To set the clock, use the LIBRARY command TIME.

CLRDSK	Erase sectors of unassigned granules.

				CLRDSK[[:]d]<ENTER>
				CLRDSK (H)<ENTER>

CLRDSK writes a continuous pattern of bytes on each sector of an unassigned granule. Sectors are written with the default FORMAT/CMD patterns.

EXAMPLE:
				CLRDSK :3<ENTER>

	This writes the appropriate pattern on all sectors of unassigned granules on the disk in logical drive 3.

CLRDSK can be aborted if <BREAK> is pressed before another cylinder is checked for unassigned granules. i.e., can only be aborted at a cylinder boundary.

CLS		Clear the screen.

			CLS<ENTER>

CLS clears the screen and positions the cursor to the upper left hand corner. CLS can be used in conjunction with other commands to erase the present screen data.

EXAMPLE:
				CLS, FREE<ENTER>

ESOTERIC
COMP		Compare two files.

Please see COMP/CMD in the System Utilities section.

CONFIG	Default powerup/reboot drive attributes.

				CONFIG[[[:]d] ([SK=q][,m][,P=p][,w][,N][,SI=k] {continued on next line}
							[,V=v][,ST=s][,O=o][,C=c][,X])]<ENTER>
				CONFIG (H)<ENTER>

		d = logical drive number, 0 to 7.
		q = Y or N for double stepping (SKIP) an 80 track drive
		m = media type, F = floppy, or R = hard disk.
		p = physical drive number. (Floppies can be physical drive 0 3)
		w = write protect condition, WE = write enable, or WP = write protect
		N = nil logical drive. (Software remove the logical drive number)
		k = number of sides, 1 or 2 for floppies, or 1 to 8 for hard disks.
		v = floppy volume, 1 or 2.
		s = stepping rate for floppies, or step code for hard disks.
		o = hard disk head offset, 0 to 7.
		c = hard disk cylinder offset, 0 to 999.
		X =	write current RAM configuration to logical drive zero (provided a memory disk is not configured).

		CONFIG<ENTER> (no parameters) displays the current RAM configuration.

The CONFIG parameters can be more than the minimum letters if you feel more comfortable by spelling out the words.

EXAMPLE:
				CONFIG :3 (PHYSICAL DRIVE = 2, SKIP, STEP = 20, WPROTECT)<ENTER>
				CONFIG :1 (SKIP TRACKS = N, SIDES = 2, VOLUME = 1)<ENTER>

CONFIG parameter detail:
d = logical drive. This is the drivespec recognized when a drive number is part of a filespec, or the target disk in a LIBRARY command.

EXAMPLE:
		VALUE/BAS:1				{logical drive 1}
		DIR :2						{logical drive 2}
		BACKUP :1 to :2		{logical drive 1 to logical drive 2}

q = skip flag. CONFIG can program a drive to read every other cylinder. CONFIG (SKIP), or CONFIG (SKIP=Y) enables MULTIDOS or ESOTERIC to read a 40 track diskette in an 80 track drive. CONFIG (SKIP=N) instructs the system to read every cylinder. You only need the first two letters of SKIP, i.e., SK. Whenever SK or SK = Y is specified, CONFIG automatically adds the WP parameter (and sets the number of cylinders in the DCT to 0, reference CAT[/CMD] and DCT information in Entry points for MULTIDOS).

m = media type. MULTIDOS or ESOTERIC can have the configuration set for floppies (F) [5¼" and/or 3½"] or hard disks (R). A separate hard disk driver is required to use hard disks. The Entry points for MULTIDOS section provides the necessary information to interface a hard disk driver with the DCT.

p = physical drive. The physical drive is the actual drive accessed as directed by the DCT. Your MULTIDOS or ESOTERIC master diskette, as created, assigns logical drive 0 to 3 to physical drive 0 to 3 respectively.

EXAMPLE:

The number of logical cylinders. If the value is zero then use CAT[/CMD] (with a diskette mounted) to update this value. This is saved with CONFIG (X)<ENTER>.

Sden = Single-density
Dden = Double-density
Pden = DBLDOSTM or NEWDOS/80 double-density

				CONFIG<ENTER>
				:0 Floppy 0, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 6mS.
				:1 Floppy 1, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 6mS.
				:2 Floppy 2, Log cyls: 0 Sden, Sides: 1, Vol: 1, Step: 6mS.
				:3 Floppy 3, Log cyls: 0 Sden, Sides: 1, Vol: 1, Step: 6mS.
				:4 Nil
				:5 Nil
				:6 NilTwo when a double-sided diskette is used as two different logical drives. This practice was used until the early 1980's. MULTIDOS/ESOTERIC can still read them.
Physical drive number.

				:7 Nil

Logical drive number.

However, you may need to change the physical drive to be accessed as the system drive logical drive 0. Logical reassignment requires two CONFIG commands to complete. The first has two logical drives assigned to the same physical drive, and the second command would reassign one of the logical drives to another physical drive. For floppies, the programmer normally would not have a physical drive with more than one logical drive assigned to it at the same time. Whenever logical drive 0 is to be reassigned, it is necessary to assign another drive to physical drive 0, prior to logical drive 0 assignment to another physical drive.

EXAMPLE:
				CONFIG :1 (P=0)<ENTER>
				CONFIG :0 (P=1)<ENTER>

	The first CONFIG command would have both logical drive 1 and 0 assigned to physical drive 0. The second CONFIG command assigns logical drive 0 to physical drive 1. The system diskette is now moved from physical drive 0 to physical drive 1. After performing the above two CONFIG commands, the resulting RAM configuration would be:

				:0 Floppy 1, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:1 Floppy 0, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:2 Floppy 2, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:3 Floppy 3, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:4 Nil
				:5 Nil
				:6 Nil
				:7 Nil

Suppose you have three drives: DRIVE 0 = 40 tracks, DRIVE 1 = 40 tracks, and DRIVE 2 = 80 tracks. And you want to copy information between several 40 cylinder diskettes. Sometimes the data is going from drive 0 to drive 1, and sometimes it is going from drive 1 to 0. You could use VFU/CMD to copy from DRIVE 0 to DRIVE 1, and DRIVE 1 to DRIVE 0. However, you do not want to exit VFU/CMD (insert your system diskette into logical drive 0) to see the files on each disk. You could use SKIP on DRIVE 2, but any time a write is required for the diskette in DRIVE 2, it would have to be swapped with the diskette in DRIVE 1. Never write to a diskette in a drive with SKIP active. Our solution could be: 1) assign logical drive 2 to physical drive 0, 2) assign logical drive 0 to physical drive 2, and 3) SKIP logical drive 0.

1) CONFIG 2(P=0)<ENTER>

				:0 Floppy 0, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:1 Floppy 1, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:2 Floppy 0, Log cyls: 80 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:3 Nil
				:4 Nil
				:5 Nil
				:6 Nil
				:7 Nil

2) CONFIG 0(P=2)<ENTER>

				:0 Floppy 2, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:1 Floppy 1, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:2 Floppy 0, Log cyls: 80 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:3 Nil
				:4 Nil
				:5 Nil
				:6 Nil
				:7 Nil
The number of logical cylinders is reset to zero whenever SKIP is set. You may use CAT[/CMD] to set this value.

3) CONFIG 0(SKIP)<ENTER>

				:0 WP Skip
					 Floppy 2, Log cyls: 0 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:1 Floppy 1, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:2 Floppy 0, Log cyls: 80 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:3 Nil
				:4 NilThe number of logical cylinders may be incorrect after you change the logical-physical relationship. You may use CAT[/CMD] to (re)set this value.

				:5 Nil
				:6 Nil
				:7 Nil

Now move the system diskette to physical drive 2, and copy between logical drive 1 and logical drive 2, without swapping diskettes.

EXAMPLE:
				COPY DATA/TXT:1 to :2<ENTER>
				COPY MEMO/TXT:2 to :1<ENTER>

If you made an 80 track system diskette, then step three is not required by placing your 80 track system diskette into DRIVE 2.

w = write protect condition. You can change the write protect condition of a diskette without removing the diskette and sliding the write protect switch for 3½" floppies, or applying the write protect tab for 5¼" floppies.

EXAMPLE:
				CONFIG 2(WP)<ENTER>	{write protect the disk in logical drive 2}
				CONFIG 2(WE)<ENTER>	{write enable the disk in logical drive 2}

NOTE: You cannot write enable a floppy diskette with the write protect tab covered.

N = nil logical drive. This parameter removes a logical drive from the system. It is useful for a setup with only two drives, and you do not want MULTIDOS or ESOTERIC to continually search 4 drives when looking for a filespec. If a physical drive is not in the system, then the logical drive assigned to it should be NILed.

EXAMPLE:
				CONFIG 2(N)<ENTER>
				CONFIG 3(N)<ENTER>

				:0 Floppy 0, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:1 Floppy 1, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:2 Nil
				:3 Nil
				:4 Nil
				:5 Nil
				:6 Nil
				:7 Nil

To reverse the effects of N, simply assign the logical drive to a physical drive:

EXAMPLE:
				CONFIG 2(P=2)<ENTER>

				:0 Floppy 0, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:1 Floppy 1, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:2 Floppy 2, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:3 Nil
				:4 NilThe number of logical cylinders is the same before you NILed a physical drive.

				:5 Nil
				:6 Nil
				:7 Nil

NOTE: The number of logical cylinders is used by ZAP/CMD to determine the highest cylinder. If this value is zero then ZAP defaults to 35 for non-NEWDOS/80 diskettes, defaults to 61 for and DBLDOSTM/NEWDOS/80 Model I double-density diskettes, and defaults to 72 for NEWDOS/80 Model III diskettes.

k = number of sides, and v = volume. The k parameter defines the number of surfaces to be accessed in the logical drive. If you have a twoheaded drive, then perhaps you would like to treat this drive as twosided single volume drive.

EXAMPLE:
				CONFIG 1(SI=2)<ENTER>

				:0 Floppy 0, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:1 Floppy 1, Log cyls: 40 Dden, Sides: 2, Vol: 1, Step: 06mS.
				:2 Nil
				:3 Nil
				:4 Nil
				:5 Nil
				:6 Nil
				:7 Nil

	This configuration would access drive 1 as a single logical drive with one directory (256 file capacity) and each track would have 36 sectors. This configuration is compatible with LDOS. The single volume method permits a very large data file (709.5K for an 80 track data diskette) to occupy one logical drive.

However, there is an alternate configuration method for twoheaded drives.

EXAMPLE:
				CONFIG 1(V=2)<ENTER>

				:0 Floppy 0, Log cyls: 40 Dden, Sides: 1, Vol: 1, Step: 06mS.
				:1 Floppy 1, Log cyls: 40 Dden, Sides: 2, Vol: 2, Step: 06mS.
				:2 Nil
				:3 Nil
				:4 Nil
				:5 Nil
				:6 Nil
				:7 Nil

The two volume method places two directories (file capacity of 128 each for double-density) on the diskette. The directory on side 0 (the side readable on a singleheaded drive) would be accessed by the logical number without any additional arguments, i.e., DIR :1. The directory on side one (the side not readable with a singleheaded drive) would be accessed by placing an apostrophe, ', immediately behind the logical drive, i.e., DIR :1'. The two volume method may be desirable for diskette portability of the data on side 0 to be accessed in a singleheaded drive.

s = stepping rate. The s parameter sets the stepping rate for the logical drive indicated. The stepping rate, also referred to as the track to track access speed in milliseconds, should not be set to a faster rate than the disk drive manufacturer's specification. The values accepted for 3½" and 5¼" floppies are 6, 12, 20, and 30; and for hard drives 0 to 15 (this is the step code for hard drives). NOTE: The floppy values are the stepping rates for the FD1793, FD1791, and WD1773. For the FD1771 (Model I single-density) the actual stepping rates are: 12mS, 12mS, 20mS, and 40mS respectively. However, the accepted values remain as 6, 12, 20, and 30.

o = head offset. The o parameter changes the head offset for hard drives. You should use SYSGEN/CMD to set up a hard drive. Nevertheless, CONFIG enables you to change the head offset for flexibility.

c = cylinder offset. The c parameter changes the cylinder offset for hard drives. You should use SYSGEN/CMD to set up a hard drive. Nevertheless, CONFIG enables you to change the cylinder offset for flexibility.

X = save configuration. The X parameter writes the current RAM configuration to logical drive 0. The X parameter is used to save the current RAM configuration stored in the Drive Control Table (DCT) located in RAM from 4500H to 457FH or ESOTERIC from 900H to 97FH, for future powerup/reboots. When a CONFIG parameter is changed, only the DCT is RAM is modified. To save the RAM configuration, remove MEMDISK if present, and enter CONFIG with the X parameter specified to write the configuration to logical drive 0.

EXAMPLE:
				CONFIG 1(SI=2)<ENTER>

	This sets up logical drive 1 for two side operation, but does not save the configuration.

EXAMPLE:
				CONFIG (X)<ENTER>

	This writes the current RAM configuration to the disk in logical drive 0.

EXAMPLE:
				CONFIG :3 (SI=2,X)<ENTER>

	This sets up logical drive 3 for two sided operation, and saves this configuration to logical drive 0 for future powerup/reboots.

ESOTERIC
COPY		Duplicate a single file.

Please see COPY/CMD in the System Utilities section.

DATE		Set or display the date stored in RAM.

				DATE[mm/dd/yy]<ENTER>
				DATE (H)<ENTER>

DATE sets the date stored in RAM to mm/dd/yy as entered. If no arguments are entered, DATE returns the date stored in RAM.

EXAMPLE:
				DATE 12/25/97	{Set RAM date to December 25, 1997}
				DATE 11/18/14	{Set RAM date to November 18, 2014}
				DATE<ENTER>		{Display current date stored in RAM}

		NOTE:	any non-numeric character may be used as a separator; and, one digit may be used for values between 0 and 9.

				DATE 1.4.12<ENTER>

	This sets RAM’s date to January 4, 2012

When MULTIDOS or ESOTERIC close a file, MULTIDOS and ESOTERIC date the file to the current date stored in RAM. If you want your files dated, then enter the date at the powerup prompt. However, if you did not enter the date at the powerup prompt, you may enter a date with the LIBRARY command DATE. The range of dates used to date the files are January 1, 1980 through December 31, 2043 (Reference FIXDATE/CMD in the SYSTEM UTILITIES section).

MODEL I
DDAM		Change address marks on a single-density diskette’s directory.

				DDAM[[:]d] (param)

				d = logical drive number
		param = U for USER DEFINED: used by TRSDOS® 2.3 and NEWDOS/21 on the Model I.
					= D for DELETED: used by all double-density systems, MULTIDOS and LDOS on the Model I.

MODEL I and MODEL III
DEAD		Software power-up.

				DEAD<ENTER>

This command performs a software reset after placing a 00H bytes in RAM from 4003H through FFFFH. DEAD requires nor arguments and/or parameters. Anything following DEAD is ignored.
DEBUG		Real time debugger.

				DEBUG[switch]<ENTER>

DEBUG is a real time debugging package to use with machine language programs. DEBUG examines and alters the contents of RAM or the Z80® registers, jumps to a specified address or begins execution with optional breakpoints, and single step Z80® instructions in RAM or execute Z80® CALLs from RAM. DEBUG cannot be use with MULTIDOS or ESOTERIC overlays and/or utilities that load into the overlay are of RAM (MULTIDOS: 4D00H to 51FFH, ESOTERIC: 1600H to 1AFFH), because DEBUG loads into this area, e.g., BACKUP/CMD, FORMAT/CMD, and RS/CMD. Once DEBUG is enabled via DEBUG (ON) it does not load and execute until:

 1.	before the first instruction is executed in an executable program with protection level of less than EXEC, or
 2.	<SHIFTBREAK>, or <CTRLBREAK> is pressed.

Upon DEBUG execution, if the display is blank, press <O> to enable the display.

FORMAT [1]: Register display only on the right hand side on the screen.

		{DEBUG pokes VIDEO refresh RAM instead of using}		AF 019B
		{the display routine to display data. }		S H NC
		{Therefore, while debugging a program with out}		BC 2000
		{put directed to the display, use format [1] to}		DE 0180
		{keep abreast of display output while debugging}		HL 4009
		{a program. }		AF'FFFF
		{ }		SZ H PNC
		{The <CLEAR> key is routed through the display }		BC'FFFF
		{routine to reset the VIDEO from a WIDE display}		DE'FEFF
		{or erase any extraneous data present on the }		HL'FFFF
		{display when DEBUG is entered with the display}		IX 4015
		{set to format [1]. }		IY 50C2
		{ }		SP 42EA
		{DEBUG will function with the display disabled.}		PC 0081

FORMAT [2]: Register display with indirect RAM plus any 64 bytes of RAM.

		AF 019B S H NC
		BC 2000 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
		DE 0180 2D36 803E 58B7 C8DD CB05 66C8 57AF C50E 6 >X.....f.W...
		HL 4009 0900 0000 0000 0000 0000 0000 010A 0100
		AF'FFFF SZ H PNC
		BC'FFFF 00C3 2406 1750 C32D 407E E3BE 23E3 C200 ..$..P.@~..#...
		DE'FEFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
		HL'FFFF 00C3 2406 1750 C32D 407E E3BE 23E3 C200 ..$..P.@~..#...
		IX 4015 010A 0100 0020 8F00 074D 0370 3F00 0000M.p?...
		IY 50C2 6540 E521 AF51 060C CD9F 50CD 9550 E37E e@.!.Q....P..P.~
		SP 42EA C250 2542 F109 1540 4F4F 4C00 8805 2542 .P%B...@OOL...%B
		PC 0081 FDE1 E1DD E1D1 C1C9 4FF1 D5DD E5E5 FDD5O.......
		 401D 074D 0307 3F00 000B 06FB 4A3C 00FF 0000 .M.p?.....J<....
		 402D C300 44C3 A307 F637 3EAF C3F2 0101 9706 ..D....7>.......
		 403D 02B0 06F7 55EF 000C 4C9C 4B9C 0175 4C20U...L.K..uL
		 404D 0023 7EFE 2028 FAFE 3AD0 FE30 3D3C 3FC9 .#~. (..:..0=<?.

FORMAT [3]: Full screen, 256byte page of RAM.

		4400 3E10 EF00 003E 40EF 56F5 3E19 EFC3 5504 >....>@.V.>...U.
		4410 C3D1 02C3 CE02 C362 043E C7EF 3E90 EF28b.>..>..(
		4420 3E12 EF02 3E42 EFA0 3E13 EF00 3E43 EF00 >...>B..>...>C..
		4430 C3B2 4AC3 D243 C311 48C3 2848 C327 48C3 ..J..C..H.(H.'H.
		4440 8C47 C3AB 47C3 9347 C382 4718 26C4 434F .G..G..G..G.&.CO
		4450 47C3 A104 1820 C3D1 43C3 C043 E601 C33A G.... ..C..C...:
		4460 46C3 0302 C3EE 473E 57EE AF18 17C3 B206 F.....G>W.......
		4470 C3C9 063E 50EF 3E80 EFC9 0034 FDCB 0166 ...>P.>....4...f
		4480 C0C3 8546 C63B 328F 447E 23FE 03C8 CD33 ...F.;2.D~#....3
		4490 00FE 0D20 F4C9 2F32 EC37 C506 1410 FEC1/2.7......
		44A0 C9DD 660D DD6E 0CDD 7E08 C9CD DA44 FDCB ..f..n..~....D..
		44B0 0166 C230 40CD 8145 E61B CD96 44CD 3446 .f.0@..E....D.4F
		44C0 3AEC 370F 30F7 C3BD 46C3 D245 C300 02C3 :.7.0...F..E....
		44D0 B74B C33A 04C3 3D03 954B 79C3 7946 C3CD .K.:..=..Ky.yF..
		44E0 46C3 CA46 AFC3 D946 C348 4AC3 D746 C335 F..F...F.HJ..F.5
		44F0 4AC3 1D4A C3DB 46C3 944A C3E1 48C3 1949 J..J..F..J..H..I

In the register display, FORMAT [1] or [2], DEBUG displays all the Z80® registers, organized for interpretation either as two 8bit registers and/or as 16bit register pairs. 16 bytes of indirect data are presented with each register pair in format [2], because most programs use several sets of register pairs as indirect pointers or indexing registers. Each of the flag registers is shown with an ASCII representation of its flag bits. For the flag registers, the hex contents are displayed, along with a bitbybit alphabetic code that makes it easier to interpret the flag status. For example, bit 0 (right most bit) is the carry flag, the alphabetic code shows a C in that position whenever the carry flag is set.

Table of codes for all the flag bits:

		BIT STATUS				IF BIT SET

		7	Sign								S
		6	Zero								Z
		5	Unused					space always
		4	Halfcarry					H
		3	Unused					space always
		2	Parity/overflow			P
		1	Add/Subtract				N
		0	Carry								C

DEBUG memory address changes are immediate upon pressing one of the following keys:

KEY 		ADDRESS change__________________________________

<>						Decrements memory display by 16d, 10H bytes
<SHIFT>			Decrements memory display by 4096d, 1000H bytes
<>						Increments memory display by 16d, 10H bytes
<SHIFT>			Increments memory display by 4096d, 1000H bytes
<>						Increments memory display by 1 byte
<SHIFT>			Increments memory display by 256d, 100H bytes
<>						Decrements memory display by 1 byte
<SHIFT>			Decrements memory display by 256d, 100H bytes

DEBUG Commands
Commands are executed as soon as the specified command key is pressed, or when <SPACE> or <ENTER> is pressed, as indicated below. All values entered are hexadecimal without the H suffix.

					TERMINATOR
COMMAND		REQUIRED	OPERATION PERFORMED

Baaaa			<ENTER>		Set minimum singlestepping address for CALLs.
					
C					none			Singlesteps next RAM instruction, with CALLs executed in full.

Dqqqq			<SPACE>		Sets memory display starting address to qqqq.

E					none			Produces continuous C commands until <SHIFTSPACE> is pressed.

F					none			Disables all display formats (screen contents is unaffected).

G[,kkkk]]	<ENTER>		Executes with optional breakpoint at kkkk (see detail next page).

I					none			Singlesteps next RAM instruction.

M[cccc]		<SPACE>		Sets the current modification address to cccc. Modification information is displayed in the lower left of the screen. If cccc is currently in the display, it is overlaid by a block cursor. If cccc is omitted, the last modification address is used for cccc.

N					none			Produces continuous I commands until <SHIFTSPACE> is pressed.

O					none			Enables all display formats.

P					none			Set display to register only format [1]4

Rrp aaaa	<SPACE>		Loads register pair rp with the value aaaa.

Q					none			Sets display to previous format [2]4 or [3]4

S					none			Sets display to full screen format [3]4

U					none			Dynamic display update until <SHIFTSPACE> is pressed.

X					none			Sets display to register format [2]4

NOTE 4: Display format is enabled via the O command. The F command merely disables DEBUG printing to the display.

If an error is made while typing an address, key in the correct address immediately after the incorrect address. DEBUG looks only at the last four characters entered.

EXAMPLE:
				DFAE944<SPACE>

	Displays the page of memory starting with address E944H.

The B command detail.
The B command enables you to limit the address where you can singlestep a CALL. This can be helpful when you are debugging a program and the program makes a call into DOS that does not have to be singlestepped.

EXAMPLE:
				B0000 900<ENTER>

	This sets the lowest address for singlestepping a CALL to 900H. If you were to encounter an instruction similar to CALL 33H in memory location 788DH, pressing I would execute this CALL in full and not singlestep this CALL.

When you press , DEBUG displays the present lower limit and a space. Key in the new lower limit (hexadecimal without the H suffix) and press <ENTER>.

The G command detail.
The G command enables you to start executing at any location by keying Gjjjj, where jjjj is the address where you want execution to take place. Also, the G command has two exclusive breakpoints. i.e., whichever occurs first resets the other breakpoint.
Therefore the full G command syntax is:

			G[jjjj][,kkkk][,tttt]

		Start executing at location jjjj and return to DEBUG's command mode at either location kkkk or location tttt.

The M command detail.
Any time you wish to alter the contents of a memory location, key Mcccc<SPACE>. This sets the memory modification address to cccc and puts a memory modification prompt in the lower left corner of the display. To modify the contents of cccc, key in the new, twodigit contents and press <SPACE>. The display and RAM is updated immediately, and DEBUG increments the modification address by one.

To increment the modification address and leave the current address unchanged, key <SPACE>, <COMMA> or <>. To decrement the modification address and leave the current address unchanged, press the <>. Similarly <> decrements the modification address by 16d, 10H, and the <> increments the modification address by 16d, 10H. Pressing any nonhex key exits the modify memory mode.

To exit DEBUG
To exit debug if the PC register was not altered, key <G><ENTER>. Otherwise (the PC register was altered), key <G><4><0><3><0><ENTER> (ESOTERIC key <G><8><4><6><ENTER>). The latter instruction works from SUPERBASIC as well. Exiting DEBUG does not disable debug. If one of the conditions for invoking DEBUG is met, then DEBUG will load and execute until:

				DEBUG (N)<ENTER>
		or	DEBUG (NO)<ENTER>
		or	DEBUG (OFF)<ENTER>

DEVICE	List I/O devices, tasks, and function keys.

				DEVICE[(H)] <ENTER>

This command lists the defined I/O devices and their routine entry points. If a device is LINKed or ROUTEd, then DEVICE indicates the LINK or ROUTE condition. The defined I/O devices are: KI = keyboard, DO = video display, PR = line printer, SI = RS 232C input, and SO = RS 232C output. For the MAX-80, MODEL 4, and ESOTERIC, DEVICE also indicates the task slot assignments and the function key entry points. And the MODEL I, does not have SI and SO.

EXAMPLE:
				DEVICE<ENTER>
				KI = I at X'45FB'
				DO linked to PR = O at X'0279'
				PR = O at X'48BD'
				SI = I at X'01D8’
				SO routed to :5 = O at X'FF00'
				Slot 2 = X'4794'
				F1 = X'47CC'
				F2 = X'47CF'
				F3 = X'47D2'
				F4 = X'47D5'
				F5 = X'47D8'
				F6 = X'47DB'

For the above: the keyboard is an input device with the routine starting at RAM address 45FBH. The display is an output device with the routine starting at 0279H, and linked to the printer whose routine starts at 48BDH. The RS 232C output is ROUTEd to a file on the disk in logical drive 5. Task slot 2 is assigned to the routine beginning at 4794H. The function key entry points are also displayed.

DIR			Display the directory for one and/or more disks.

				DIR[[[]mask[!mask][!...]][[[:]d[([A][,D][,I]] {continued on next line}
							[,P][,Q][,R][,S][,T][,X][,Z])]]<ENTER>
				DIR (H)<ENTER>

DIR displays the logical drive number, disk title, disk date, number of logical tracks, number of physical cylinders, free space in granules, free space in kilobytes, and the names of all visible and nonsystem files on logical drive d in alphabetical order.

Mask is used to limit the display to selected files that match the mask. The mask is optional, and has two wild cards. The ? character is used as a substitute for any character, and the * character is used as a filler substitute for any character. You may use ! to effect a logical OR with up to eight masks. And, be aware that the mask option does not override the I and/or S parameters discussed on the next page.

EXAMPLE:
		INPUT 				FILES DISPLAYED
		DIR */CMD<ENTER>							with an extension of /CMD.
		DIR */ASM!*/SRC<ENTER>				without an extension of /ASM and/or /SRC.
		DIR B*/*!*/?B*<ENTER>					with a B in the first position and/or a B in the second position of the extension.
		DIR ??A*/*<ENTER>						without an A in the third position.
		DIR */<ENTER>									without an extension.
		DIR ???/*<ENTER>							with 1 to 3 characters in the filename.

If a mask is specified without a drive number, then MULTIDOS or ESOTERIC searches all mounted disks for the specified mask.

EXAMPLE:
		DIR */CMD<ENTER>				displays all /CMD files on all mounted disks.
		DIR */CMD:1<ENTER>			displays all /CMD files on logical drive 1.
		DIR */* (I,S)<ENTER>		displays all files on all mounted disks.

The A parameter displays, for each file, the date and time of the last update (Date/Time), the physical allocation including the end of file sector and the last byte within the end of file sector (EOF), the file size in granules (Grans), the number of segments contiguous granules (Seg), the number of logical records (Lrec), and the logical record length (LRL). A maximum of 10 files (64X16 screen) or 18 files (80X24 screen) is displayed at one time. To display the next file, press <SPACE>; to display another page of files, press <ENTER>; or, to exit, press <BREAK>.

EXAMPLE:
				DIR ZAP/* :0 (A)<ENTER>

				0 MULTIDOS 01/30/22 40 log 40 phy cyls 6 grans 9.00K
				Filename Date Time EOF Grans Seg Lrec LRL

				ZAP/CMD P 04/09/21 06:59:52 29/198 5 1 30 256

	The file ZAP/CMD was last updated on 4/09/2021 at 6:59:52 AM, uses 29 full sectors and 198 bytes in the 30th sector, consumes 5 granules in 1 segment (the granules are contiguous), and has 30 logical records of 256 bytes each.

The D parameter displays the files in descending date order - not considering time.

The I parameter displays invisible files as well as visible files. Invisible files are indicated with an I after the filename.

The P parameter directs the output to the printer as well as the display with the directory listing scrolling until the last file is displayed.

The Q parameter displays the files in descending size order, i.e., the largest file is displayed first.

The R parameter displays removed files, provided the directory entry location was not overwritten. (CDIR[/CMD] clears out a removed file's directory entry). Removed files are indicated with an R after the filename.

The S parameter displays the system files as well as visible files. System files are indicated with an S after the filename.

The T parameter displays the files in descending date order considering time.

The X parameter displays the files sorted by the extension with the extension separated from the filename.

The Z parameter reverses the sort order.

You have three ways to control the directory sort: the D/T parameters sorts by date, the Q parameter sorts by size, and the X parameter sorts by extension. However, any combination of the D/T and/or Q and/or X parameters sorts by date first, then by size, then by extension.

EXAMPLE:
				DIR CO*/CMD!U*/BOL!R*/BOL 0(T,Q,X,I,S)<ENTER>

				0 MULTIDOS 01/30/22 40 log 40 phy cyls 6 grans = 9.00K
				Filename Date Time EOF Grans Seg Lrec LRL

				UTIL BOL SP 03/23/13 07:28:52 5/126 1 1 6 256
				COMP CMD 11/13/11 15:10:50 9/68 2 1 10 256
				UTIL2 BOL SP 08/04/04 23:12:22 3/123 1 1 4 256
				COPY CMD I 03/27/04 01:45:42 5/249 1 1 6 256
				RENUM BOL SP 10/05/03 08:50:14 5/125 1 1 6 256
				UNPACK BOL SP 09/24/03 18:39:48 5/124 1 1 6 256
				RESOLVE BOL SP 04/20/03 03:43:28 5/15 1 1 6 256
				CONVERT CMD 12/28/98 20:35:28 2/91 1 1 3 256

DIRECTORY, QUICK	Display the directory for one disk.
At the command level, DIR can be invoked with one keystroke. The key pressed represents the logical drive desired. The keystrokes are:

		<0> = DIR :0		<SHIFT><0> = DIR :0'
		<1> = DIR :1		<SHIFT><1> = DIR :1'
		<2> = DIR :2		<SHIFT><2> = DIR :2'
		<3> = DIR :3		<SHIFT><3> = DIR :3'
		<4> = DIR :4		<SHIFT><4> = DIR :4'
		<5> = DIR :5		<SHIFT><5> = DIR :5'
		<6> = DIR :6		<SHIFT><6> = DIR :6'
		<7> = DIR :7		<SHIFT><7> = DIR :7'

The keystroke must be in the first position. For the Model I and Model III, you must do this before any other key is pressed. If you have pressed any other key(s), you must press <BREAK> instead of <> to position the cursor to the first position. For the MAX-80, Model 4, and ESOTERIC, you may use <> to position the cursor to the first position.

DO		Substitute disk file for keyboard input.

			DO filespec<ENTER>
			DO (H)<ENTER>

DO executes the filespec entered. Usually the filespec has been previously created with the BUILD command. The DO command adds the extension /IDO to the filespec, if the filespec was entered without an extension. DO reads the contents of TOPMEM, creates a 290d, 122H byte buffer from TOPMEM down, executes the DO file, and resets TOPMEM after to the value prior to the DO file executing. If high memory is to be reserved for an application with/by the DO file, then TOPMEM should be set before the DO file is executed. If the DO file is to be activated during powerup/reboot, use a multiple command AUTO, and/or the multiple AUTO command to accomplish this task.

EXAMPLE:
				AUTO TOPMEM xxxxx,DO STARTER<ENTER>

		or	AUTO TOPMEM xxxxx<LF>
				DO STARTER<ENTER>

DUMP		Transfer RAM contents to a disk file.

				DUMP filespec (START=ssss,END=eeee[,TRA=tttt][,RIM][,TITLE])<ENTER>
				DUMP (H)<ENTER>

					ssss = starting address: default = 0000H
					eeee = ending address: default = 0000H
					tttt = optional transfer address: default = 402DH (ESOTERIC = 0883H)

DUMP transfers the contents of memory starting at ssss and ending at eeee to the filespec, and adds the extension /CMD to the filespec if none was entered and the RIM parameter is not specified. The transfer address, tttt, defaults to 402DH (883H for ESOTERIC), and specifies the entry point for execution of the file.

EXAMPLE:
				DUMP BUG (START=X'FD00',END=X'FFFF',TRA=X'FE00')<ENTER>

	The contents of memory locations FD00H through FFFFH is transferred to a disk file named BUG/CMD. When the command BUG<ENTER> is entered, MULTIDOS or ESOTERIC loads memory from FD00H to FFFFH and begins execution at FE00H.

The TITLE parameter writes a TITLE comment block (up to 12 characters) on the first sector of the file created with the DUMP command. The TITLE is the entered filename and extension, if any. The parameter RIM (Ram IMage) specifies direct transfer to disk sectors without load marks. The RIM parameter is used to create a disk file with an exact copy of RAM, and is not an executable file.

EXAMPLE:
				DUMP DCT (START=X'4500',END=X'457F',RIM)<ENTER>

	The contents of memory locations 4500H through 457FH is transferred to a disk file named DCT/RIM.

FMAP		Disk allocation map.
FMAP/CMD: MODEL I and MODEL III (different legends with same mapping)

				FMAP[[[:]d] ([A][,P])]<ENTER>
				FMAP (H)<ENTER> (MAX-80, MODEL 4, and ESOTERIC)

					d = logical drive
					A = display a cylinder map by files
					P = send to printer also

FMAP[/CMD] displays and/or prints a map of allocated granules, directory granules, and any locked out granules. FMAP[/CMD] uses the following symbols to indicate how a disk is allocated:

		.	= unassigned granule	X	= assigned granule
		D	= directory granule		L	= locked out granule

EXAMPLE:
				FMAP 6<ENTER>
				6 * DATA * 07/04/85 35 log 35 phy cyls 66 grans = 82.50K
				
				 0 17 X. L. DD
				 18 34
				
				Locked 1 Grans, Media: SINGLE

	This single-density diskette has granule 0 on cylinder 0 allocated, granule 0 on cylinder 13 locked out, and the directory uses granules 0 and 1 on cylinder 17.

FMAP[/CMD] with the A parameter displays a map of the target disk indicating the file occupying the granules for each cylinder (LUMP if NEWDOS/80). If a cylinder is unoccupied, then FMAP[/CMD] does not display and/or print the cylinder.

EXAMPLE:
				FMAP :2 (A)<ENTER>

				2 MDOS1.72 05/26/85 80 log 80 phy cyls 211 grans = 316.50K

				 0 | NoDOS/Ind | DOSM/ASM | DOSM/ASM |
				 1 | DOSM/ASM | DOSM/ASM | DOSM/ASM |
				 2 | DOSM/ASM | DOSM/ASM | DOSM/ASM |
				 3 | DOSM/ASM | DOSM/ASM | |
				 17 | DIR/SYS | DIR/SYS | DIR/SYS |

	The third granule, granule 2, is unoccupied on cylinder 3; and, cylinders 4 through 16 and cylinders 18 through 79 are unoccupied.

If you are creating a printout using both the A and P parameters, be sure to check your FORMS width. The printout width is the number of granules per cylinder times 15 plus three for the cylinder number. The cylinder map for doublesided double-density diskettes produces line lengths of 93 characters (6x15+3), and for MEMDISK the line length is 123 characters (8x15+3). If necessary, use MINIDOS to output the control codes to place a printer into a compressed format.

FORMS		Set or display printout format parameter values.

				FORMS[(I[,M=m][,W=w][,T=t][,P=p][N=n][,V=switch]
						 [,L=switch][,C=switch][,F=switch][,OFF][,X])]<ENTER>
				FORMS (H)<ENTER>

					I = initialize line counter and character counter to zero.
					m = left margin. (spaces on the left hand side before printing begins)
					w = width of text. (printer width should be equal to or greater than [m+w])
					t = text length. (number of printed lines of text)
					p = page length. (paper length in lines)
					n = the number of nulls (decimal 0) sent after each linefeed (decimal 10)
					L = issue a linefeed (decimal 10) after each carriage return (decimal 13)
					C = route formatted printer output to RS232C
					OFF =	sets M to 0, W to 255, T to 60, P to 60, N to 0, V off, L off, C off, F off, and the line and character counters to 0.
					X =	save current forms setting to the system disk for default parameter values. The disk in drive zero must be write enabled. The saved values are loaded via RESET or subsequent powerup/reboots.
							MODEL I and MODEL III:
					F = hardware form feed: if set then decimal 12 is passed directly to the printer and sets the line counter to 0, i.e., LINE 1.
					V = hardware vertical tab: if set then decimal 11 is passed directly to the printer

The maximum line width is determined by the M and W values. When a line exceeds the sum of these two values, FORMS inserts a carriage return (decimal 13) to start a new line. If the W parameter is set to 255, then FORMS does not insert carriage returns.

The page length, the length of the form in lines, is controlled by the P parameter. The text length, the number of lines that are printed on a page, is controlled by the T parameter. For example, in printing on standard 11" paper (with the printer set to 6 lines per inch), and you want to print on 58 lines, leaving 4 blank lines at the top and 4 blank lines at the bottom, set the P parameter to 66 (6 X 11 = 66), and the T parameter to 58 (66 4 4 = 58).

EXAMPLE:
		FORMS (T=58,P=66)<ENTER>

When you decide an application requires forms control, be sure to set your form to the correct position to start printing, and initialize the line and character counter to zero by using the I parameter.

EXAMPLE:
				FORMS (I,M=0,W=80,T=60,P=66)

				1. The line and character counters are set to zero.
				2. The left margin is set to zero.
				3. The print width is 80 characters.
				4. The printed text length is 60 lines.
				5. The page length is 66 lines.

This is the default FORMS setting.

With the V parameter not set, FORMS interprets a decimal 11 as a linefeed without a carriage return (vertical tab one line) if (M + W) is set to the printer's width.

When ESC, decimal 27, is encountered, FORMS does not count this and/or the next character in the page width. i.e., LPRINT CHR$(27);CHR$(12) sends both codes directly to the printer without generating a form feed, and leaves the character counter where it was before this ESC pair was sent to the printer. For printers that require extended escape sequences such as "esc&18d", you can issue the following sequence to keep the character counter in sync: 27 27 27 27 38 49 56 100. The printer is sent 27 38 49 56 100 (yes, only one 27).

The RAM address for some of the FORMS parameter values are:
																					 MULTIDOS				 ESOTERIC
		Text length.									(T)				4028H						1225H
		Line counter.														4029H						1226H
		Width of text.								(W)				402AH						1227H
		Character counter.											402BH						1228H
		Page length less text length.	(P)(T)		402CH						1229H

When a FORMS command is issued, the current values are displayed, unless the I and/or OFF parameter is specified. This is useful for initializing the FORMS parameters from within SUPERBASIC without messing up the display.

To list the current parameter values, key:

		FORMS<ENTER>

If T and P are equal, then FORMS does not paginate the text. If T and P are equal, and W is 255, then FORMS passes all characters directly to the printer. FORMS (OFF) sets T = P, and W = 255; therefore, passing all characters to the printer. FORMS (OFF) also disables LPRINT TAB(N) and LPRINT TAB(#N). To enable LPRINT TAB(N) and/or LPRINT TAB(#N), set the W parameter to the printer's width.

FREE	Display the free space on all mounted disks.

			FREE [(H)]<ENTER>

FREE displays the drive number, the disk's name and date, the number of free file spaces, the number of free granules and the equivalent K bytes (1024 bytes) on each mounted disk. In addition, FREE totals all the free file spaces and available disk space in kilobytes.

EXAMPLE:
			FREE<ENTER>
			0 MULTIDOS 01/30/22 156 files, and 896 grans = 896.00K
			1 Megadisk 06/16/10 252 files, and 1018 grans = 3054.00K
			3 ACoCuSSZ 07/16/00 224 files, and 101 grans = 151.50K

			The total free directory space is 632 files.
			The total free disk space is 4101.50 kilobytes.

NOTE: Free :d<ENTER> is the same as FMAP :d<ENTER> (does not recognize FMAP parameters)

LIB			Display the MULTIDOS or ESOTERIC LIBRARY commands.

			LIB<ENTER>

This command lists the available LIBRARY commands for a full system disk. Some LIBRARY commands are contained in Command/DOL that uses RAM from 4D00H to 51FFH (ESOTERIC: 1600H to 1AFFH). The other LIBRARY commands use RAM from 5200H to 68FFH (ESOTERIC: 4A00H to 60FFH), and several LIBRARY commands for MAX-80, Model 4, and ESOTERIC also use RAM designated as application area 2. Application area 2 is defined as follows:

								MAX-80						MODEL 4					ESOTERIC
						3400H to 36FFH		3000H to 37FFH		4200H to 49FFH
				and	3900H to 3BFFH

LINK		Simultaneous output for output devices.

				LINK[dv1 [to]dv2]<ENTER>
				LINK (H)<ENTER>

LINK links an output device (DO, PR or SO) to another output device.

EXAMPLE:
				LINK DO to PR<ENTER>

	This command echoes to the display anything going to the printer.

To unLINK all LINKed devices, key LINK<ENTER>.

If dv1 is LINKed to dv2, then dv2 cannot be LINKed to dv1, dv1 cannot be ROUTEd to dv2, and dv2 cannot be ROUTEd to dv1. However if dv1 is LINKed to dv2, and dv2 is LINKed to dv3, and dv3 is LINKed to dv1, the system crashes.

LINK to a filespec can be accomplished by the indirect usage of the ROUTE command. To link the display to a filespec key:

	ROUTE PR to filespec<ENTER>
	LINK PR to DO<ENTER>

This method is better than ROUTEing the display to a disk file, because it lets you see what you are doing. Now every byte (including control codes) going to the display also goes to the filespec. A subsequent LINK<ENTER> stops sending to the filespec the information going to the display; however, a ROUTE<ENTER> is required to close the filespec. If ROUTE<ENTER> was executed first, then the display contents goes to the printer also. The LIBRARY command RESET can be used in place of both LINK and ROUTE to remove all LINKs and ROUTEs.

To filter out control codes going to the filespec key:

	PRT cc,cc,cc,cc,cc,cc,cc,cc<ENTER>	{cc are control codes to filter}
	FORMS (C)<ENTER>
	ROUTE SO to filespec<ENTER>
	LINK PR to DO<ENTER>

LIST		Display disk file.

				LIST filespec[([A]|[C][,E][,G][,P])]<ENTER>
				LIST (H)<ENTER>

LIST displays the filespec's contents to the display or printer. If the file contains control codes (decimal 1 to 31), LIST suppresses the control codes unless the C parameter is specified. Graphic characters are suppressed unless the G parameter is specified. The E parameter strips the high-bit and supersedes the G parameter. The P parameter directs the listing to the device in the printer DCB. LIST can be terminated by pressing <BREAK> or paused by pressing <SHIFT>@. To continue from a listing pause, press any key other than <SHIFT>@.

The A parameter overrides the C, E, G and P, parameters, and performs a sector by sector dump of the filespec, pausing after each full sector is displayed. Press any key to continue with the sector dump. When the last sector is reached, only the bytes within the last sector are displayed.

LOAD		Place an object file from disk into RAM.

				LOAD filespec<ENTER>

LOAD transfers the filespec into RAM and returns to the command mode.

PATCH		Modify the contents of a disk file.

		(1) PATCH filespec (REC=nn[,BYTE=yy]) b1[;b2][;b3][;b4]<ENTER>
 or (2) PATCH filespec (REC=nn) T=t1[.t2][.t3]>b1[.b2][b3]<ENTER>
				PATCH (H)<ENTER>

					nn = physical record of filespec (the first record is 0)
					yy = relative byte in physical record nn.
					b1, b2, b3, b4, etc. = decimal value of replacement bytes.
					t1, t2, t3, etc. = decimal value of target bytes.

The target or byte separator can be either a semicolon and/or a period.

PATCH changes any file, regardless of the password protection level.

EXAMPLE:
				PATCH CREF/BOL (REC=1) T=2;245.32>2.245;48<ENTER>

	This patches the file CREF/BOL to show the total references during a full reference listing instead of a specified reference.

Format (1) is used when you know exactly where to make the change. Format (2) is used when you know the target sequence occurs only once in the physical record nn. For (REC=nn), nn must be the physical record, because PATCH ignores the file's logical record length.

PROT		Change file(s) password; disk's master password, or name and/or date

				PROT[[:]d] [(LOCK][,UNLOCK][,DATE][,PW])]<ENTER>
				PROT (H)<ENTER>

					LOCK	 =	assign master password to all user files
					UNLOCK =	remove all passwords from user files
					PW		 =	change the master password
					DATE	 =	date all user files to current RAM date (used with LOCK and/or UNLOCK)

If no parameters are entered with PROT, you are prompted to change the disk's name and the date. If you want to change only one of the name/date pair, simply <ENTER> for the one not to be changed.

PROT can change the disk's master password, change the password for all visible and nonsystem files to the disk's master password (LOCK), or remove the passwords for all visible and nonsystem files (UNLOCK). The drivespec referenced must be write enabled.

EXAMPLE:
			PROT (LOCK,DATE)<ENTER>

	This assigns the master password to all user files, and redates all user files to the current RAM date.

NOTE: The master password on your MULTIDOS master disk is PASSWORD (upper case).
			The master password on your ESOTERIC master disk is PASSWORD (upper case).

REMOVE		Remove a filespec.

				REMOVE filespec<ENTER>
				REMOVE (H)<ENTER>

REMOVE resets the directory inuse bit and deallocates the disk space used by the filespec, if the disk containing the filespec is not write protected. If a drivespec is not included in the filespec, then MULTIDOS or ESOTERIC searches for the file in ascending logical drive order and removes it, if found. For compatibility with BASIC’s keyword “KILL” and MINIDOS' “K”, MULTIDOS and ESOTERIC may use KILL to remove a filespec.

RENAME	Change filename.

				RENAME [#]filespec1 [to]filespec2<ENTER>
				RENAME (H)<ENTER>

					# = renamed file's date is changed to the current RAM date.

RENAME changes the name of filespec1 to filespec2. Filespec2 contains the protection level, password, and directory attributes of filespec1. RENAME does not duplicate an existing filename on the same disk, and changes only the primary HIT (Hash Index Table [see ZAP]) entry. The "Check/Repair directory" option in ZAP/CMD indicates that a HIT byte is wrong for a renamed file if the file uses more than four segments (multiple HIT entries), because RENAME does not change the HIT code for other than the primary entry. Obviously, MULTIDOS and ESOTERIC do not require the correct HIT code for other than the primary directory entry.

RESET		Reset I/O devices and restore TOPMEM.

				RESET[(T[,F)]]<ENTER>
				RESET (H)<ENTER>

					T = do not reset background task (only reset I/O devices and restore TOPMEM).
					F = do not reset I/O devices (only removes all background tasks).

RESET unLINKs, unROUTEs, removes all background tasks, and restores TOPMEM to the powerup/reboot value. This stops the spooler and disables typeahead because these functions are tasks in the interrupt chain - background tasks. A RESET (T)<ENTER> resets I/O devices and restores TOPMEM without disturbing anything in the interrupt chain.

If a ROUTE to filespec is active, then RESET or RESET (T) closes the file, and unROUTEs the device.

RESET (F) is used to remove tasks from the interrupt chain without disturbing any active LINKs and/or ROUTEs.

RESTOR	Recover a REMOVEd filespec.

				RESTOR filespec:d<ENTER>

The drive number is mandatory for RESTOR. RESTOR attempts to recover a REMOVEd file. If the file space on the disk has been reassigned you are notified of this condition and RESTOR aborts. RESTOR should be used immediately after you inadvertently removed a file. Although you may receive the message:

		'The file, REMOVED/FIL, has been restored.'

after many other files have been created and removed from a particular disk, the CONTENTS may be residue from another file. Please check the contents of the recovered file.

ROUTE		Redirect one device to another.

				ROUTE[dv1 [to]dv2]<ENTER>
		 or	ROUTE dv1 [to]filespec<ENTER>
				ROUTE (H)<ENTER>

ROUTE changes the routine entry point of dv1 to dv2's entry point. If format (2) is used, ROUTE creates a 290 byte buffer in high memory and directs the output destined for dv1 to the specified filespec. The first two letters in the filespec cannot match a device name. e.g., ROUTE SO to PRT/TXT is interpreted as ROUTE SO to PR

EXAMPLE:
				ROUTE PR to DO<ENTER>

	This command directs all bytes normally going to the printer to go to the display instead.

EXAMPLE:
				ROUTE PR to LINE/TXT:2

	This command creates a 290 byte buffer in high memory, opens the file LINE/TXT on the disk in logical drive 2, and redirects all bytes normally going to the printer to go to the file LINE/TXT. To unROUTE all devices, and close the file key:

				ROUTE<ENTER> or RESET<ENTER>	{see RESET for side effects}

SCREEN	Dump the screen contents to the printer.

				SCREEN<ENTER>

SCREEN transfers the screen contents to the printer. This command is ignored if the printer is not ready when SCREEN is entered. If the display is in the 80X24 mode, then SCREEN outputs 1920 bytes (twentyfour 80 character lines). And, if the FORMS is set to less than W=80, then the printout takes at least two lines for each line of video information.

This function calls the JKL routine at 4461H. If you are in SUPERBASIC, I recommend using CALL &4461 instead of CMD"SCREEN" to print the display because SUPERBASIC has the ability to directly call an address. For ESOTERIC, the call is to 877H.

The use of SCREEN can be imbedded in an assembly language program by pointing the HL register to the literal SCREEN followed by a carriage return, and calling 4405H.

		00230					LD		HL,FUNCT
		00240					CALL	4405H					;865H for ESOTERIC
		 ...
		01940 FUNCT		DEFM	'SCREEN'
		01950					DEFB	0DH

NOTE: The address of FUNCT cannot be in the overlay address space. The overlay address space is 4D00H to 51FFH for MULTIDOS and 1600H to 1AFFH for ESOTERIC.

SETCOM	Set or display RS-232-C parameter values (LIBRARY command MODEL III)
SETCOM/CMD: MODEL 4 and ESOTERIC

			SETCOM[([BAUD=b][,WORD=w][,par][,sel][,STOP=s][,tsw][,DTR][,RTS][,SAVE])]<ENTER>
			SETCOM (H)<ENTER>

			 b =	Baud rate: 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200, 9600, or 19200.
			 w =	Word length: 5, 6, 7, or 8.
			par =	Parity switch: PE for parity enabled, or PD for parity disabled.
			sel = Parity selection: ODD or EVEN
			 s =	Number of stop bits: 1 or 2.
			tsw =	Transmit switch: TE for transmitter enabled, or TD for transmitter disabled.
			DTR if entered sets DTR high, otherwise DTR is set low.
			RTS if entered sets RTS high, otherwise RTS is set low.
			SETCOM<ENTER> displays the current RS232C settings.

Formatted output to a disk file is achieved with the following two commands:

					FORMS (C)<ENTER>
					ROUTE SO [to]FILESPEC<ENTER>

This enables you to save a printing to a disk file, then use the LIBRARY command LIST filespec (P) to print the information. This is even possible without an RS-232-C board installed. To avoid double linefeeds, set FORMS (L=N) for the disk copy, and FORMS (L) for the printing if you need to have linefeeds after each carriage return.

MAX-80, MODEL 4, and ESOTERIC
SPOOL		RAM print buffer (SPOOLER)

				SPOOL[switch]<ENTER>
				SPOOL (H)<ENTER>

The spooler is activated with the command:

				SPOOL<ENTER>

The spooler uses task slot 1 and 32K of expansion RAM. The spooler is disabled, with the contents intact, by the command:

				SPOOL (OFF)<ENTER>

Also, the LIBRARY command RESET removes the spooler from the task slot and leaves the spooler contents intact. If SPOOL is activated again, the printout commences when the spooler receives an additional character.

You have some control of spooling while the spooler is active. If you want to suspend spooling with the contents intact, then press <CTRL@>. To resume spooling, press <CTRLC>. If you want to empty the spooler, press <CTRLE>. <CTRLE> flushes the spooler and sends a carriage return to the printer.

TIME		Set or display the time stored in RAM.

				TIME[hh:mm:ss]<ENTER>
				TIME (H)<ENTER>

					hh = hour, mm = minute, ss = second

This command displays the current RAM time without any arguments, or sets the RAM time to the given argument.

EXAMPLES:
				TIME 22:21:00<ENTER>

	This sets RAM's time to 10:21 PM.

				TIME 12.7<ENTER>	NOTE:	any non-numeric character may be used as a separator; and, one digit may be used for values between 0 and 9)

	This sets RAM’s time to 12:07:00 PM

TOPMEM	Set or display the highest available address in system memory.

				TOPMEM[ddddd|X’hhhh’]<ENTER>
				TOPMEM (H)<ENTER>

					ddddd = a decimal number from 26879 (24831 if ESOTERIC) to 65535
					 hhhh = a hexadecimal number from 68FF (60FF if ESOTERIC) to FFFF.

TOPMEM sets the upper limit of memory available to the operating system. This is useful if you have some high memory drivers to protect, because all MULTIDOS and ESOTERIC programs check the value of TOPMEM and operate at that limit.

EXAMPLE:
				TOPMEM X’BFFF’<ENTER>

	This sets the upper memory usage to BFFFH.

EXAMPLE:
				TOPMEM 61439<ENTER>

	This sets the memory limit to 61439.

TOPMEM without a value displays the current TOPMEM value.

EXAMPLE:
				TOPMEM<ENTER>
				TOPMEM = X’EFFF’

TYPE		Typeahead. (not MODEL I)

				TYPE[switch]<ENTER>

TYPE enables you to key in characters prior to returning to the command mode. However, TYPE is disabled whenever access to a diskette is active. The LIBRARY commands DIR, CAT, and FMAP consume a typeahead character for each line of file information displayed. Therefore, typeahead is essentially off because these commands usually display several lines. BASIC captures one typeahead character prior to an INKEY$ command (i.e., the INKEY$ buffer is scanned at the end of each statement and at the end of each logical line; therefore, if a key is pressed well before an INKEY$ command is encountered, the INKEY$ command receives this key press). For Model 4 MULTIDOS and ESOTERIC, press <CTRLLEFTSHIFT> to flush the typeahead buffer.

VERIFY	Reread a written sector.

				VERIFY[switch]<ENTER>

VERIFY causes all disk writes to be reread for readability. All directory writes are automatically verified.

MAX-80 and Model 4
V64			Set video width to 64 characters.

				V64<ENTER>

V64 sets the video width to 64 characters then clears the display.

MAX-80 and Model 4
V80			Set video width to 80 characters.

				V80<ENTER>

V80 sets the video width to 80 characters then clears the display.

LIBRARY COMMANDS
LIBRARY COMMANDS

Page 24
Page 25
BACKUP/CMD	Duplicate a diskette.

				BACKUP[A][[:]d1]][to][[:]d2]<ENTER>

				 A = absolute format
				d1 = source logical drive
				d2 = destination logical drive

BACKUP/CMD duplicates all files from one diskette to another. The A option, if specified, causes an absolute format and does not check and/or warn you if the destination disk contains data. The source and destination logical drive numbers can be specified on the BACKUP command line. If the source and destination logical drives are the same, BACKUP/CMD prompts you to mount the destination or source disk as required (swapping). To prevent accidental rewriting on the source disk, when swapping is required, manually write protect the source disk.

BACKUP/CMD takes you through the easy procedure to duplicate a disk. After BACKUP/CMD is loaded and executes, the screen clears and

			 'Diskette Duplicator (c) 1999, V. B. Hester

Q1			Which logical drive contains the source diskette? _'

appears. BACKUP/CMD is waiting for a numerical response of 0 to 7, or 0' to 7' followed by <ENTER>. If the source drive number was specified in the BACKUP command line, then this query is bypassed.

Respond with the logical drive number for the source disk. Next:

Q2		 'Which logical drive for the destination diskette? _'

Again BACKUP/CMD is waiting for a numerical response of 0 to 7, or 0' to 7' followed by <ENTER>. If the destination drive was specified in the BACKUP command line, then this query is bypassed.

Respond with the logical drive for the destination disk. Next:

Q3		 '<ENTER> when the source disk is in logical drive X.'

Where X is the response to the first query (Q1). Mount the source disk, if it is not already there, into logical drive X then press <ENTER>.

BACKUP analyzes the source disk for cylinder count and density, then

	 'Source diskette has YY physical cylinders, in ZZZZZZ density.

Q4			Physical cylinders for the destination diskette (WW to 96)? _'

is displayed. Where YY is the number of cylinders on the source disk and ZZZZZZ is the density of the source disk. The destination disk is formatted in ZZZZZZ density; however, you can change the cylinder count equal to or greater than WW for the destination disk. If <ENTER> is the response for the cylinder count, then BACKUP/CMD formats YY cylinders.

After the physical cylinder response is acceptable, BACKUP/CMD displays:

			 '<ENTER> when the destination disk is in logical drive V.'

where V is the response to the second query (Q2). If the destination drive is the same as the source drive, you must swap the disks. If the destination disk was previously formatted and the A option was not specified in the BACKUP command, then the message:

	 'Diskette contains data.
				The diskette name is DISKNAME, dated mm/dd/yy.
Q5			Reformat this diskette (Y/N/Q)? _'

appears. If you want to reformat this disk, press <ENTER> or <Y><ENTER>. If you want to bypass the formatting, key <N><ENTER>, BACKUP/CMD skips the formatting but verifies the destination diskette. If you want to abort, key <Q><ENTER> or press <BREAK>.

BACKUP/CMD does not check the destination diskette for a density match with the source disk. If the destination disk had been formatted differently, you must respond <Y> to the fifth query (Q5) or BACKUP/CMD aborts during the initial verification.

If the source and destination logical drives are the same, BACKUP/CMD prompts you to insert the source disk and destination disk as required. The swapping continues as necessary until all the files are copied to the destination diskette.

After BACKUP/CMD has copied all files:

			 'Completed.'

is displayed.

If either the source and/or destination disk was in logical drive 0, then

			 'Insert SYSTEM <ENTER>'

is also displayed. This prompts you to insert a MULTIDOS or ESOTERIC system disk into logical drive zero to return to the state prior to entering BACKUP/CMD.

The format pattern placed on the disks by BACKUP/CMD may be changed by zapping one to four bytes on BACKUP/CMD's first sector. To zap BACKUP/CMD, key ZAP<ENTER> in the DOS command mode, press <F>. Enter BACKUP/CMD to the Filespec prompt. When ZAP/CMD requests "Relative sector in file BACKUP/CMD (0 to 00017/0011H).....", press <ENTER>. Relative sector zero of BACKUP/CMD is displayed at this point. The format pattern bytes for double-density are located in bytes 8EH/8FH, and the format bytes for single-density are located in bytes 9EH/9FH. Please see next page.

									Relative sector zero of BACKUP/CMD

		B Hex00 057A 2042 4143 4B55 5020 3739 3520 7A2E .z BACKUP 699 z.
		A 10 2A20 2020 204E 4F54 4943 4520 2020 202A * NOTICE *
		C Dr 20 2A20 2028 6329 2870 2931 3939 3520 202A * (c)(p)1999 *
		K 0 30 2A20 562E 2042 2E20 4865 7374 6572 202A * V. B. Hester *
		U 40 2A20 2041 6C6C 2052 6967 6874 7320 202A * All Rights *
		P Cy 50 2A20 2020 5265 7365 7276 6564 2020 202A * Reserved *
		/ 10 60 2A20 2020 204E 4F54 4943 4520 2020 202A * NOTICE *
		C 0A 70 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 0102 0030 ************...0
		M 80 4442 4C20 4445 4E53 4954 5920 3D20 6DB6 DBL DENSITY = m.
		D Se 90 534E 4720 4445 4E53 4954 5920 3D20 E5E5 SNG DENSITY = ..
			00 A0 0000 0000 CDBC 3321 3734 CD67 4411 00003!74.gD...
			00 B0 131A E607 D521 C140 0109 00ED B0D1 4F1A!.@......O.
				 C0 E6B8 B112 3E00 F50E 00CD 2134 1100 00E1>.....”4....
		File D0 3E00 BC3E FF28 1BFD CB02 4E28 073C 32CB >..>.(....N(.<2.
		0000 E0 3032 0F32 CD84 30D5 CDBC 3321 3734 CD67 02.2..0...3!74.g
		000H F0 44D1 3258 31AF 3266 3132 8532 CD1F 34CB D.2X1.2f12.2..4.

								00 00 = least sensitive

								E5 E5 = mildly sensitive (IBM single-density)

								6C 6C = mildly sensitive (equivalent to E5 E5)

								5B 5B = intermediate (TRSDOS® Model III)

								6D B6 = most sensitive (MULTIDOS and ESOTERIC)

The more sensitive the byte pattern, the greater the probability a marginal diskette will fail format and the lesser the probability that having formatted successfully, the diskette will fail later. The less sensitive the byte pattern, the lesser the probability a marginal diskette will fail format and the greater the probability that having formatted successfully, the diskette will fail later.

Relative byte A0H contains the double-density interleave flag. MULTIDOS and ESOTERIC are distributed with an interleave of three. If this byte is nonzero, then the interleave is two. Three was originally used for the Model I running at 1.77 MHz. An interleave of two can be used successfully if the CPU speed is at least 2.5 MHz. For the MODEL 4, an interleave of two can be used successfully, because the CPU speed of the Model 4 is 4 MHz. An interleave of two loads a long file quicker than an interleave of three. What this means is a full track takes 600 mS to read with an interleave of three and 400 mS to read with an interleave of two. Please see ZAP 014. The interleave flag can be changed by CUSTOM/CMD.

MODEL I and MODEL III
CAT/CMD			Display a directory of a TRS80® disk.

Please see CAT in the LIBRARY COMMANDS section.

MODEL I and MODEL III
CDIR/CMD		Zero unused directory entries.

				CDIR[[:]d][(CLEAR[,C=cc][,D=dc])]<ENTER> (MODEL I and MODEL III)

					cc = cylinder count for floppies
					dc = directory cylinder

CDIR/CMD zeros the entire 32byte unassigned directory entry, and prevents the recovery of a REMOVEd file via RESTOR. CDIR (CLEAR) is used to remove all files except DIR/SYS and BOOT/SYS. This can be used instead of reformatting a known good diskette. Use this powerful command with extreme caution. If the target diskette is a floppy, then the number of cylinders is obtained from the GAT sector unless C=nn is specified.

CDIR is a LIBRARY command for the MAX-80, MODEL 4, and ESOTERIC versions.

MODEL III, MAX-80, MODEL 4, and ESOTERIC
CONVERT/CMD	Change address marks on single-density disks.

				CONVERT[[:]d]<ENTER>

CONVERT/CMD changes the USER DEFINED address marks on a single-density diskette's directory sectors to DELETED address marks. DELETED address marks is required on all diskette's directory sectors for the Model III, Model 4, and MAX80 versions of MULTIDOS to read; and, ESOTERIC to read. When you attempt to display the directory of a single-density diskette and the error message is:

				Granule allocation table read error.
				Directory read error.

The single-density diskette probably needs the address marks converted.

EXAMPLE:

		CONVERT :2<ENTER>

	This changes the address marks on the disk in drive 2.

If no drive number or zero is specified,

		'Press <ENTER> when the target diskette is in drive zero.'

is displayed. Insert the single-density diskette in drive zero, then press <ENTER>. After CONVERT/CMD is complete or an error occurs, you are prompted to insert a MULTIDOS or ESOTERIC system disk.

COMP/CMD		Compare two files. (This is an ESOTERIC LIBRARY command.)

				COMP filespec1:d1 [to][filespec2:]d2 [(P[,G])]
				COMP [:]d filespec1 [to]filespec2 [(P[,G])]
				COMP [:]d filespec [(P[,G])]
				COMP $ filespec:d1 [to][filespec:]d2 [(P[,G])]	{d1 and/or d2 = 0}
				COMP [:]0 $ filespec1 [to]filespec2 [(P[,G])]
				COMP [:]0 $ filespec [(P[,G])]
				COMP (H)<ENTER>

The last three syntaxes are used whenever an alien and/or data diskette will be in logical drive zero.

			H = Help
			P = direct to printer also.
			P,G = direct to printer also printing 80H to BFH as graphic characters.

COMP/CMD compares, byte for byte, two files, and totals the differences.

EXAMPLE:

				COMP DOG/CMD:1 2 <ENTER>

			 'Mismatch: physical sector 05H relative byte 02H 00H . vs 01H .
				Mismatch: physical sector 05H relative byte 03H 26H & vs 19H .
				Mismatch: physical sector 05H relative byte 33H 08H . vs 00H .
				Mismatch: physical sector 05H relative byte 34H 24H $ vs 25H %
				Total differences = 4 bytes.'

	The file DOG/CMD on logical drive 1 has a 26H in the third byte on physical sector 5 (the first physical sector is 0), and the file DOG/CMD on logical drive 2 has a 19H in the same byte.

When a mismatch is found, COMP/CMD pauses. You can singlestep through the mismatches by pressing <SPACE>, abort with <BREAK>, or continue without pauses by pressing <ENTER>. If you press <ENTER>, you can press <SPACE> to pause.

COPY/CMD		Duplicate a single file. (This is an ESOTERIC LIBRARY command.)

				COPY [#]filespec1:d1 [to][filespec2:]d2
				COPY [:]d [#]filespec1 [to]filespec2
				COPY [:]d [#]filespec
				COPY $ [#]filespec:d1 [to][filespec:]d2	{d1 and/or d2 = 0}
				COPY [:]0 $ [#]filespec1 [to]filespec2
				COPY [:]0 $ [#]filespec
				COPY (H)<ENTER> (MAX-80, MODEL 4, and ESOTERIC)

					H = Help
					# = the destination file is to be dated to the current RAM date.
					$ = whenever a MULTIDOS or ESOTERIC system diskette must be removed from drive zero.

COPY/CMD duplicates a file from one disk to another. The disk containing filespec1 is referred to as the source disk. The disk to receive filespec1 is referred to as the destination disk. If the file’s name on the destination disk is to be different, then use filespec2.
If the filespec for the destination disk is the same as the filespec for the source disk, then the filespec need not be repeated.

		COPY CHARGES/TXT:1 to :2<ENTER>

If the destination disk drivespec is the same as the source disk drivespec, COPY/CMD prompts you when to mount the source or destination disk.

		COPY :3 SHIFT/TXT to MURK/ABC<ENTER>
		COPY SHIFT/TXT:3 to MURK/ABC:3<ENTER>

Both of the above two commands duplicates the contents of SHIFT/TXT to MURK/ABC on the disk in logical drive number three, and COPY/CMD prompts you when to mount the source or destination disk.

When logical drive zero is a drivespec, and the source and/or destination disk is not a MULTIDOS or ESOTERIC system disk, a $ must precede the source filespec. A MULTIDOS or ESOTERIC system disk is a disk with at least, Allocate/DOL, Command/DOL, Open/DOL, Close/DOL, and Error/DOL.

		COPY $WHENEVER/BAS:0 to :2
		COPY :0 $HELPME/RIM to SHOWME/RIM
		COPY $ THEM/OLD:0 to THEM/NEW:1

Please follow the prompting provided by COPY/CMD. Whenever the prompt:

		'Insert SYSTEM <ENTER>'

is displayed, remove the source or destination disk from logical drive 0, insert a MULTIDOS or ESOTERIC system disk into logical drive 0, then press <ENTER>.

COPY/CMD normally assigns the source filespec's date to the destination file. However, if you want the destination file is to receive the date stored in RAM, place a # immediately in front of the source filespec.

		COPY #CHECKING/BAS:1 to CHECKING/BAS:2
		COPY #CHECKING/BAS:0 to :0
		COPY :2 #CHECKING/BAS
		COPY 2 #CHECKING/BAS to CHECKING/BAS
		COPY :0 $ #CHECKING/BAS

COPY/CMD does not prompt you to mount a disk if the source and destination drivespecs are different, and neither is logical drive 0.

		COPY FUNLOVER/TXT:2 to :3

Does not prompt you to mount any disks. And the colon, :, is optional for standalone drivespecs.

		COPY FILEDOS:1 to 2

CUSTOM/CMD	System and Utility customizer (zapper).

				CUSTOM<ENTER>

CUSTOM/CMD enables you to customize your system and incorporates all of the MAX-80, and MODEL 4 optional ZAPs; and, most of the MODEL I and MODEL III optional ZAPs. CUSTOM/CMD requires no parameters because CUSTOM/CMD is menu driven. When you have updated an option for a particular program, you may press <ENTER> to update the file, or press <BREAK> to update another option for the same file. You can return to the previous menu by pressing <BREAK>. Although the changes are immediate – upon pressing <ENTER>, changes to SYSRES/SYS or ESORES/SYS do not take effect until you re-boot the computer.

	ZAPS in CUSTOM/CMD

	
	
	

	MODEL I
	MODEL III
	MODEL 4

	ZAP 002
	ZAP 002
	ZAP 001

	ZAP 003
	ZAP 003
	ZAP 003

	ZAP 005
	ZAP 005
	ZAP 004

	ZAP 006
	ZAP 006
	ZAP 005

	ZAP 007
	ZAP 007
	ZAP 006

	ZAP 008
	ZAP 008
	ZAP 014

	ZAP 011
	ZAP 011
	ZAP 019

	
	
	ZAP 021

	
	
	ZAP 022

	
	
	ZAP 023

	
	
	ZAP 024

	
	
	ZAP 025

Modify counts available with CUSTOM/CMD is: Model I = 29, Model III = 32, MAX-80 = 41, Model 4 = 55, and ESOTERIC = 55.

DBLFIX/CMD	Fix boot sector on DBLDOSTM diskettes.

				DBLFIX [:]d<ENTER>

The drive number specified, d, must be other than zero. DBLFIX/CMD modifies DBLDOSTM data and system diskettes to be read and written to by MULTIDOS or ESOTERIC. The DBLDOSTM diskette will perform the same after DBLFIX/CMD has modified the diskette. The DBLDOSTM diskette to be modified must be write enabled.

EXAMPLE:	To fix a DBLDOSTM diskette in drive 1.

				DBLFIX :1<ENTER>

DDT/CMD			3½" and 5¼" floppy disk drive timer.

				DDT<ENTER>

DDT/CMD is a diskette drive rotation speed timer, requiring a (soft-sector) diskette, formatted or unformatted, to be in the selected disk drive. Press any key to return to the drive select prompt. Press <BREAK> to exit DDT/CMD.

FIXDATE/CMD	Change date format (except for floppy in logical drive zero)

				FIXDATE [:]d [(param[,ABS][,CHECK][,G])]<ENTER>
				FIXDATE (H)<ENTER>

			 d =	drive number ── the drive number is mandatory.

			 param =	1)	ZT converts 1.0 through 2.0 to 3.xx format (this parameter is the default, i.e., if omitted "ZT" will be assumed).
								2)	TZ converts 3.xx to 1.0 through 2.0 format
								3)	OZ converts 2.1x to 1.0 through 2.0 format
								4)	ZO converts 1.0 through 2.0 to 2.1x format
								5)	OT converts 2.1x to 3.xx format
								6)	TO converts 3.xx to 2.1x format
		ABS or A =	Specifies update files that are probably in the previous format to the new format.
	CHECK or C =	Display the files to be changed without changing them.
		GAT or G =	Update GAT bytes CCH and CDH to represent the number of physical cylinders less 35 in CCH, and the diskette's configuration in CDH (see the discussion of these two bytes in the DIRECTORY STRUCTURE section).
					 H =	Help

FIXDATE/CMD changes the date format among the three formats used by MULTIDOS. It is recommended that you convert your disks once. It is relatively easy to convert your disks from 2.0 to the format used by 3.xx; however, the conversion from 2.1x to 3.xx or 3.xx to 2.1x may require the ABS parameter. The ABS parameter is used to convert files that their date format cannot be interpreted properly. Normally, during initial conversions, you would not use this parameter. However, it may be required if you are going to convert back to the 2.0 format with the TZ parameter. Version 2.1x uses the bytes previously assigned to the access password to store the hour, minute, and year. The previous bytes for the date remained. Version 3.xx uses the bytes previously assigned to the update and access passwords to store the year, month, day, hour, minute, and seconds divided by two. The previous bytes used for the date are now used for the access password. ESOTERIC only uses the 3.xx format.

Although FIXDATE/CMD automatically updates the bytes on the GAT table at locations CCH and CDH (for use with Open/DOL on Version 2.11 or later) whenever any file's date is converted, you may specify the G parameter to force this action if none of the dates are converted. Open/DOL, for versions 2.11 or later, has been changed to only access a diskette if the drive's configuration agrees with the diskette's configuration. i.e., if you put a single-sided diskette in a drive that is configured double-sided, Open/DOL does not open the file and returns "Drive Configuration Error." (DOS error 40/28H). However, [V]FU/CMD has built in error messages and returns "Unknown error."

FIXDATE/CMD will not change the dates on a floppy diskette in logical drive zero.

MODEL I and MODEL III
FMAP/CMD		Disk allocation map.

Please see FMAP in the LIBRARY COMMANDS section.

FORMAT/CMD	Prepare a disk for data storage.

				FORMAT[[:]d][A][!][diskname]<ENTER>

					d = drive number
					A = absolute format
					! =	use current DCT parameter values, and the default track count {from a sector in FORMAT/CMD}
					 = to signify a disk name to follow

FORMAT/CMD prepares a disk for file storage only.

FORMAT/CMD takes you through the easy procedure to format a disk. After FORMAT/CMD is loaded and executes, the screen clears and

				'Formatter (c) 1998, V. B. Hester

				 Which logical drive contains the diskette to be formatted? _'

is displayed. Reply with the target diskette's logical drive number. If the drive number was specified in the FORMAT command line, then this query is bypassed.

				'Name of diskette to be formatted (default "* DATA *")? _'

Reply with the desired disk name 1 to 8 characters in length, or press <ENTER> if * DATA * is acceptable.

(Q3)		'Physical cylinders to format (2 to 96 default 40)? _'

Reply with the desired track count. FORMAT can only format up to the drive capacity. If you only have a 40 track drive, you cannot format 80 tracks.

				'Date for diskette to be formatted (default mm/dd/yy)? _'

Reply with a date in the format mm/dd/yy, or press <ENTER> to use the default date.

				'Master password for this diskette (default PASSWORD)? _'

Reply with the password 1 to 8 characters in length, or press <ENTER> to use PASSWORD.

				'Single, Double, or "P" density (S,D, or P default "x")? _'

Reply with S, D, or P, as desired, or press <ENTER> to use "x". If the DCT is locked, please use the default setting. Otherwise, FORMAT will not function.

				'Logical cylinder for the DIRECTORY (1 to XX default 17)? _'

XX = Is either one less than the track count entered in (Q3) or 63 – whichever is lower. Press <ENTER> to use 17, or enter the desired directory cylinder.

If the disk to be formatted contains data, and the A option was not specified in the FORMAT command line, then the message:

				'Diskette contains data.
				 Diskette name is DISKNAME, dated mm/dd/yy.
				 Format this diskette (Y/N/Q)? _'

appears. If you want to reformat this disk, press <ENTER> or <Y><ENTER>. <N><ENTER>, <Q><ENTER>, or <BREAK> aborts FORMAT.

SPECIAL FORMATS
With knowledge of the DCT parameters and how they correlate with each other, you can create special sector/granule formats. Keep in mind, however, that the maximum number of granules per cylinder is eight. Suppose you want a double-density diskette to maximize the number of granules per cylinder while minimizing the number of sectors per granule thus obtaining the most efficient storage of a lot of small files. This can be accomplished by manually adjusting (via ZAP/CMD or DEBUG) the DCT and setting bit 5 of DCT+1.

EXAMPLES: For ESOTERIC replace the 45xx with 09xx.

(1) DOUBLE DENSITY 3 sectors/granule and 6 granules/cylinder, drive #3

			4530H 8023 0111 0000 0306 1210 0000 0000 0000

This can only be for single-sided diskettes. If a diskette were double-sided, then the number of granules per cylinder would have to be 12 (the maximum is 8).

(2) SINGLE DENSITY 2 sectors/granule and 5 granules/cylinder, drive #2

			4520H 0022 0111 0000 0205 0A08 0000 0000 0000

(3) DOUBLE DENSITY 4 sectors/granule and 4 granules/cylinder, drive #1

			4510H 8021 0111 0000 0404 100E 0000 0000 0000

Double density diskettes are formatted with 18 sectors per track. Obviously, this format pattern does not utilize all of the available diskette space. It uses only 16 sectors per track. The other two sectors are formatted; however, normal I/O to this diskette does not access the "hidden" sectors.

You cannot format a double-density diskette with 2 sectors/granule and 9 granules/cylinder, because the maximum number of granules per cylinder is 8,

(4) DOUBLE DENSITY 2 sectors/granule and 8 granules/cylinder, drive #2

			4520H 8022 0111 0000 0208 100E 0000 0000 0000

When FORMAT encounters a locked DCT (bit 5 of DCT+1 set), FORMAT creates a diskette with the DCT parameters and put this information in relative bytes 0F8 through 0FF on sectors 0 and 1 of the first track.

The format pattern placed on the disks by FORMAT/CMD may be changed by zapping one to four bytes on FORMAT/CMD's first sector. Key in ZAP<ENTER>, press <F>. Enter FORMAT/CMD to the Filespec prompt. When ZAP/CMD requests "Relative sector in file FORMAT/CMD (0 to 00014/000EH).....", press <ENTER>. Relative sector number zero of FORMAT/CMD is displayed at this point. The format pattern bytes for double-density are located in bytes 8EH/8FH, and for single-density in bytes 9EH/9FH. The default format track value, hexadecimal, is located in byte AFH.

									Relative sector zero of FORMAT/CMD

		F Hex00 057A 2046 4F52 4D41 5420 3739 3520 7A2E .z FORMAT1098 z.
		O 10 2A20 2020 204E 4F54 4943 4520 2020 202A * NOTICE *
		R Dr 20 2A20 2028 6329 2870 2931 3939 3520 202A * (c)(p)1998 *
		M 0 30 2A20 562E 2042 2E20 4865 7374 6572 202A * V. B. Hester *
		A 40 2A20 2041 6C6C 2052 6967 6874 7320 202A * All Rights *
		T Cy 50 2A20 2020 5265 7365 7276 6564 2020 202A * Reserved *
		/ 10 60 2A20 2020 204E 4F54 4943 4520 2020 202A * NOTICE *
		C 0A 70 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 0102 0030 ************...0
		M 80 4442 4C20 4445 4E53 4954 5920 3D20 6DB6 DBL DENSITY = m.
		D Se 90 534E 4720 4445 4E53 4954 5920 3D20 E5E5 SNG DENSITY = ..
			18 A0 4446 4C54 2046 4D54 2054 524B 203D 2028 DFLT FMT TRK = (
			12 B0 0000 003E 00CD 9744 DBF0 0F38 FBFD CB00 ...>...D...8....
				 C0 5628 0A3E 00CD 9744 DBF0 0F38 FB3A 4834 V(.>...D...8.:H4
		File D0 CD8F 3322 D132 21C5 32CD 6744 1600 CD35 ..3".2!.2.gD...5
		0000 E0 340E 00CD F932 C273 32FD CB02 4E28 233A 4....2.s2...N(#:
		000H F0 5D30 57C5 3E01 3229 3432 4B34 CD35 34C1]0W.>.2)42K4.54.

							00 00 = least sensitive

							E5 E5 = mildly sensitive (IBM single-density)

							6C 6C = mildly sensitive (equivalent to E5 E5)

							5B 5B = intermediate (TRSDOS® Model III)

							6D B6 = most sensitive (MULTIDOS and ESOTERIC)

The more sensitive the byte pattern, the greater the probability a marginal diskette will fail format and the lesser the probability that having formatted successfully, the diskette will fail later. The less sensitive the byte pattern, the lesser the probability a marginal diskette will fail format and the greater the probability that having formatted successfully, the diskette will fail later.

Relative byte B0H contains the double-density interleave flag. MULTIDOS and ESOTERIC are distributed with an interleave of three. If this byte is nonzero, then the interleave is two. Three was originally used for the Model I running at 1.77 MHz. An interleave of two can be used successfully if the CPU speed is at least 2.5 MHz. For the MODEL 4, an interleave of two can be used successfully, because the CPU speed of the Model 4 is 4 MHz. An interleave of two loads a long file quicker than an interleave of three. What this means is a full track takes 600 mS to read with an interleave of three and 400 mS to read with an interleave of two. Please see ZAP 014. The interleave flag can be changed by CUSTOM/CMD.

MODEL I and MODEL III
GR/CMD			Keyboard graphic character filter (high memory).

				GR<ENTER>

GR/CMD modifies the keyboard driver to produce graphic characters, values 129 through 191, directly from the keyboard. GR/CMD loads into high memory and modifies the TOPMEM address. To produce graphic characters press <[RIGHT]-SHIFT·CLEAR>. To return to normal characters press <[RIGHT]-SHIFT·CLEAR> again. The code values returned from the keyboard driver as modified by GR/CMD are:

	Key
	Code
	
	Key
	Code
	
	Key
	Code

	
	
	
	
	
	
	
	

	0
	129
	
	L
	150
	
	f
	171

	1
	130
	
	M
	151
	
	g
	172

	2
	131
	
	N
	152
	
	h
	173

	3
	132
	
	O
	153
	
	i
	174

	4
	133
	
	P
	154
	
	j
	175

	5
	134
	
	Q
	155
	
	k
	176

	6
	135
	
	R
	156
	
	l
	177

	7
	136
	
	S
	157
	
	m
	178

	8
	137
	
	T
	158
	
	n
	179

	9
	138
	
	U
	159
	
	o
	180

	A
	139
	
	V
	160
	
	p
	181

	B
	140
	
	W
	161
	
	q
	182

	C
	141
	
	X
	162
	
	r
	183

	D
	142
	
	Y
	163
	
	s
	184

	E
	143
	
	Z
	164
	
	t
	185

	F
	144
	
	↑
	165
	
	u
	186

	G
	145
	
	a
	166
	
	v
	187

	H
	146
	
	b
	167
	
	w
	188

	I
	147
	
	c
	168
	
	x
	189

	J
	148
	
	d
	169
	
	y
	190

	K
	149
	
	e
	170
	
	z
	191

Model I: If you do not have a lower case hard modification, the values returned by a through z can be achieved with <SHIFT><key>. GR/CMD is not executable from BASIC.

MODEL I and MODEL III
HELP/CMD		Provide syntax and quick reference for MULTIDOS LIBRARY commands.

				HELP[command]<ENTER>

HELP assists you in using the MULTIDOS LIBRARY commands along with the format required to execute each command. If command is omitted or incorrect, then HELP lists all of the available commands in the HELP file.

INSTALL/CMD	Update SYSRES/SYS and other files on a hard disk.

				INSTALL:d<ENTER> (You MUST use the INSTALL/CMD version that is on the floppy.)

After you execute INSTALL/CMD the following message appears:

			 'Update hard disk's SYSRES/SYS to latest version.

				Which logical drive contains the new SYSRES/SYS file? _'

Key the logical floppy drive number that the latest version of MULTIDOS. INSTALL/CMD ensures that you are updating a hard disk from a floppy, updates SYSRES/SYS then executes VFU/CMD to update the MULTIDOS files on your hard disk that has a later version on the floppy. This latest version of INSTALL/CMD that maintains all custom configurations, if any, that you modified in SYSRES/SYS via CUSTOM/CMD.

Updating earlier releases of Model 4 MULTIDOS 2.00 or 2.1x?

INSTALL/CMD	Update SYSRES/SYS and overwrite files on a hard disk.

				INSTALL.TERRI:d<ENTER>

After you execute INSTALL/CMD the following message appears:

			 'Update hard disk's SYSRES/SYS to latest version.

				Which logical drive contains the new SYSRES/SYS file? _'

Key the logical floppy drive number that the latest version of MULTIDOS followed by an asterisk. INSTALL/CMD ensures that you are updating a hard disk from a floppy, updates SYSRES/SYS and overwrites Open/DOL and Close/DOL. Then INSTALL executes VFU/CMD to overwrite the MULTIDOS files on your hard disk that has an identical name on the floppy. Please be sure to rename any files you do not want overwritten.

MODIFY THE DATE FORMAT FOR VERSIONS 2.00 (only prompts for the date)
If you are upgrading from version 2.00 (different date format) to version 3.00 or later, then you must execute the following command:

				FIXDATE :0<ENTER>

to modify the previous date format on non MULTIDOS files to the new date format used by MULTIDOS 3.00 or later (please reference FIXDATE/CMD).

MODIFY THE DATE FORMAT FOR VERSIONS 2.1x (prompts for both the date and time)
If you are upgrading from version 2.1x (different date format) to version 3.00 or later, then you must execute the following command:

				FIXDATE :0 (OT)<ENTER>

to modify the previous date format on non MULTIDOS files to the new date format used by MULTIDOS 3.00 or later (please reference FIXDATE/CMD).

LO/CMD			Object file offset utility.

			LO[filespec]<ENTER>
			LO (H)<ENTER>

LO/CMD can change where and how a file loads. LO/CMD defaults to the /CMD extension. If you want to access a file with a different extension, place the extension after the filename, or just a / for no extension. Follow me through the steps detailed below:

		LO LO<ENTER>

The screen clears and

	 'Load Offsetter Version 4.0 (c) 1999, V. B. Hester
				Source Filespec? LO
				Relative, direct, or fixed offset (R/D/F)? _'

is displayed. Press <ENTER> (default = the first choice, R relative).

	 'Program loads:
				5200 5243
				5300 – 5DFA
				Entry point = 5200
				Offset appendage (N/Y)? _'

is displayed. The information on the display tells us that the file LO/CMD loads from 5200H to 5243H, skips over 5244H through 52FFH, loads 5300H to 5DFAH, and has an entry point of 5200H. An offset appendage moves the file to 5200H before the file executes. A <Y><ENTER> response tells LO/CMD to add an offset appendage to a file to be specified later. Respond <Y><ENTER>. If we had entered an N or just pressed <ENTER>, we would have bypassed this query:

			 'Disable or enable interrupts (D/E)? _'

Press <ENTER> (default = first choice, D, disabled). Then

			 'New base address in HEX? _'

is displayed. An <ENTER> here defaults to the lowest load address displayed (5200H). Key in 7000<ENTER>. The 7000 is where the destination filespec loads, and the entry point is to the offset appendage. Now

			 'Destination filespec? _ '

is displayed. Here is where we would enter a filename (auto /CMD appended). Instead, we will start over by entering an * character to this query.

				*<ENTER> starts over at the "Source Filespec? _" prompt.

Key in LO<ENTER>. Now, let's respond D<ENTER>.

			 'Load base starting address HEX (5E00 minimum)? _'

is displayed. Press <ENTER> (default = 5E00H).

Next

			 'Load marks or direct dump (L/D)? _'

is displayed. The direct offset enables us to load a /RIM type file, e.g., BOOT/SYS.

Let's start over because LO/CMD is an inappropriate file for this action. Key *<ENTER>

Key in LO<ENTER>. Now, let's respond F<ENTER>.

			 'Load base starting address HEX (5E00 minimum)? _'

is displayed. Press <ENTER> (default = 5E00H).

	 'Program loads:
				5200 5243
				5300 – 5DFA
				Entry point = 5200
				Load marks or direct dump (L/D)? _'

is displayed. Press <ENTER> (default = the first choice, L, load marks).

Key <Y><ENTER> to "Offset appendage (N/Y)? _"

Key <ENTER> to "Disable or enable interrupts (D/E)? _"

Now

			 'Entry point HEX? _'

is displayed. An <ENTER> here defaults to the appendage entry point. Any other address is taken verbatim. Key in 402D<ENTER>. The file, we could name, would load and exit to MULTIDOS. Let's start over again once more. Enter *. Key in LO<ENTER>. Respond F<ENTER>, <ENTER>. Now D<ENTER> for the "Load marks or direct dump (L/D)? _" query.

			 'File or disk sectors (F/D)? _'

appears on the display. An <F> or <ENTER> response takes us to the "Destination filespec? _" prompt, but a <D><ENTER> asks us for drive, track and sector. A direct dump, <D>, file has no load marks. The BOOT/SYS files on other operating systems are direct dumped files. SYSRES/SYS on your MULTIDOS and ESORES/SYS on your ESOTERIC diskette has no load marks and was written to the diskette with this utility.

SUMMARY:
	An R offset loads a file to "New base address". If we add an appendage, the file relocates to the original address before it executes. If we do not add an offset appendage, the file loads to "New base address" and exits. A D offset enables us to add load marks to a file so that we can disassemble the file and/or reverse engineer the file. An F offset enables us to change a file with load marks to a direct file. Also, whenever the file load is noncontiguous, the F offset restarts at a new page (xx00H) boundary.

MODEL I and MODEL III
MEM/CMD			Random Access Memory test.

				MEM<ENTER>

MEM/CMD tests random access memory from 4000H to TOPMEM leaving an FFH byte in many locations. If a memory byte fails, the byte and bit that failed is displayed and MEM/CMD exits without testing additional memory.

MAX-80, MODEL 4, and ESOTERIC
MEM/CMD			Random Access Memory test.

				MEM[(H)|(A)]<ENTER>

					H = Help
					A = test expansion RAM if allocated or not

MEM/CMD tests random access memory from 0 to TOPMEM. If the expansion RAM is available, then MEM/CMD tests the expansion RAM leaving an FFH pattern in many bytes. However, if MEMDISK and/or SPOOL is using the expansion RAM, then MEM/CMD prints:

				'Expansion RAM occupied. Press <ENTER> to test or <CLEAR> to end.'

If you press the <CLEAR> key, MEM/CMD exits. If you press the <ENTER> key, then MEM/CMD tests the expansion RAM leaving an FFH pattern in every byte. This would overwrite anything currently in the SPOOL file and totally destroy a MEMDISK.

MAX-80 and MODEL 4: If a memory bit fails, the byte and bit that failed is displayed and MEM/CMD exits without testing the balance of RAM. MEM/CMD names the powerup bank of RAM as BANK A, with two 32K CHUNKS (CHUNK 1 [0 to 7FFFH] and CHUNK 2 [8000H to FFFFH], and names the expansion RAM as BANK B, with two 32K CHUNKS: CHUNK 1 and CHUNK 2. MULTIDOS only banks in expansion RAM from 8000H to FFFFH replacing BANK A, CHUNK 2.

If the failing bit is indicated as BIT 8, then the memory byte is unstable.

ESOTERIC: If a memory bit fails, the byte and bit that failed is displayed and MEM/CMD exits without testing the balance of RAM. MEM/CMD names the powerup banks of RAM as BANK 0 (0 to 7FFFH) and BANK 1 (8000H to FFFFH), and names the expansion RAM as BANK 2, and BANK 3. ESOTERIC only banks in expansion RAM from 8000H to FFFFH replacing BANK 1.

ESOTERIC indicates the BANK being tested.

If the failing bit is indicated as BIT 8, then the memory byte is unstable.

MODEL I and MODEL III
MEMDISK/CMD	High memory pseudo drive.

				MEMDISK[param]<ENTER>

		param:	tt = number of tracks (2 to 16, default 16)
			or		 X = Remove MEMDISK

MEMDISK/CMD uses high memory as a data disk allocating 2K for each track. Each track is eight granules with one sector per granule. The logical drive assigned to MEMDISK is the first available logical drive slot (the lowest one that is ‘Nil’). MEMDISK is removed by

				MEMDISK X<ENTER>

MEMDISK is an excellent tool for testing; but remember, of you remove MEMDISK, re-boot, or turn off your computer, the data in MEMDISK is lost!

MAX-80, MODEL 4, and ESOTERIC
MEMDISK/CMD	Random access memory pseudo drive.

				MEMDISK[[:]d][(H)|(S][,R][,OFF)]<ENTER>

					d = drive number (0 to 7)
	 S or SYS = DOS system files only
	 R or REC = Recover MEMDISK
				OFF = Remove MEMDISK

MEMDISK/CMD uses the 64K of expansion RAM as a data or system disk. If the spooler is active, then MEMDISK only uses 32K of the expansion RAM. If you want to use the spooler and MEMDISK, then the spooler should be loaded first. If drive zero or no drive number is specified, then MEMDISK/CMD copies all of the system overlays, creating a system MEMDISK including BASIC/CMD and all of the /BOL files. If you want to create a system disk without BASIC/CMD and the /BOL files, then the S parameter must be specified.

			MEMDISK (S)<ENTER>

This command creates a system disk without BASIC leaving more room for other programs.

If you re-boot and you want to recover the contents of MEMDISK, then

				MEMDISK (R)<ENTER>

should be executed. This command recovers the MEMDISK provided the computer was not turned off. The R parameter also recovers MEMDISK after the MEMDISK is removed via

				MEMDISK (OFF)<ENTER>

This removes MEMDISK from expansion RAM and the DCT. In addition, if MEMDISK was a system disk, then MEMDISK/CMD prompts you to insert a system disk into the prior logical drive 0.

MAX-80, MODEL 4, and ESOTERIC
MODULE/CMD	High memory management utility.

				MODULE[module name]<ENTER>

MODULE/CMD requires a specific memory header to report and/or remove any high-memory modules. The use this memory header enables you to reclaim high memory once the lowest module is removed. Here is the description of the MULTIDOS/ESOTERIC memory header:

MLOAD		JR	START					;pseudo branch
LAST		DW	0							;previous TOPMEM
				DB	namex-name		;length of name
name		DM	‘Module Name’	;module’s name
namex
prva1		DW	0							;where value1 was
prvv1		DW	0							;value1
prva2		DW	0							;where value2 was
prvv2		DW	0							;value2
prvan		DW	0							;where valuen was
prvvn		DW	0							;valuen
				DW	0							;zero: end of values
prta1		DW	0							;task1 address
prtn1		DB	0							;task1 number
prta2		DW	0							;task2 address
prtn2		DB	0							;task2 number
prtan		DW	0							;taskn address
prtnn		DB	0							;taskn number
				DW	0							;zero: end of tasks
START											;module code start

The first group, PRVxx word pairs, is described as follows: prvv1 holds the value that was in location prva1, prvv2 holds the value that was in location prva2, and so on until the last pair: prvvn holds the value that was in location prvan. The pair of words is terminated with a zero word. The second group, PRTxx word and byte, is described as follows: prta1 is the previous task address for the task number stored in prtn1, prta2 is the previous task address for the task number stored in prtn2, and finally prtan is the previous task address for the task number stored in prtnn. This is also terminated with a zero word. Even if your module does not modify an address and/or change the address of an interrupt task, you must always terminate each group with a zero word. This enables the utility MODULE/CMD to set the values and slot address to where they were before the module was invoked. Executing the utility MODULE/CMD with no arguments displays the locations of all high memory modules. Executing the utility MODULE/CMD with a particular module’s name removes that module from high memory and restores all values and interrupt task addresses. This enables you to suspend a background task with a new one, and then restore the previous background task when the module is removed.

The module’s name can be any character that is available from the keyboard. The first character cannot be a space, and the length must be from 1 to 72 characters. For simplicity, the module names of the utilities MONITOR/CMD, PRT/CMD, SHOW/CMD, and SSAVER/CMD are MONITOR, PRT, SHOW, and SSAVER respectively. The module’s name does not have to be the same as the file’s name. Familiarity with assembly language programming, better equips you in creating memory headers.

MAX-80, MODEL 4, and ESOTERIC
MONITOR/CMD	Real time debugger (extended Debug/DOL).

				MONITOR[(H)]<ENTER>

MONITOR/CMD is a high memory utility that supersedes DEBUG. And, can be used with MULTIDOS and ESOTERIC overlays and utilities that load into the overlay are of RAM. MONITOR/CMD is dormant until a DEBUG execute action is invoked. For the MAX-80 and MODEL 4, the display format must be in the 80 character mode. If the display is blank, press <O> to enable the display. MONITOR/CMD does not have DEBUG’s commands P, Q, S, and X, because MONITOR/CMD only uses the last eleven screen rows. MONITOR/CMD has DEBUG’s commands B, C, D, E, F, G, I, M, N, O, and R that behave exactly like the same commands in DEBUG. MONITOR/CMD has two commands not available in DEBUG: K and L. The K command toggles between enable and disable interrupts. The L command enables you to disassemble 1,138 Z80® instructions.

				L[aaaa],bbbb<ENTER>

disassembles from aaaa (default PC register) to bbbb. Use <SPACE> to pause/single-step, <ENTER> to continue, and <BREAK> to stop and return to MONITOR’s display.

MONITOR’s display format is:

AF FFBB S H NC AF’0342 Z N I 00 EI 0000
BC 0271 ED43 2340 2220 40C9 79D8 CDDE 41CD EA41 .C#A@ @.y...A..A BC’0006 0000
DE 0180 2D36 803E 58B7 C8DD CB05 66C8 57AF C50E 6 >X.....f.W... DE’0019 0000
HL 4009 0900 0000 0000 0000 0000 0000 010A 0100 HL’4123 0000
IX 4015 010A 0100 0020 8F00 074D 0370 3F00 0000M.p?... 0000
IY 50C2 6540 E521 AF51 060C CD9F 50CD 9550 E37E e@.!.Q....P..P.~ 209B
PC 0971 E1 POP HL SP F368 56FB
 401D 074D 0307 3F00 000B 06FB 4A3C 00FF 0000 .M.p?.....J<....
 402D C300 44C3 A307 F637 3EAF C3F2 0101 9706 ..D....7>.......
 403D 02B0 06F7 55EF 000C 4C9C 4B9C 0175 4C20U...L.K..uL
 404D 0023 7EFE 2028 FAFE 3AD0 FE30 3D3C 3FC9 .#~. (..:..0=<?.

There are seven values displayed for the stack pointer in an MSB·LSB format. In this example, the stack pointer (SP) is at address F368H, the next instruction is POP HL; and, when this instruction is executed, the HL register pair will be valued with 56FBH.

NOTE: The screen saver will not blank the screen if you are in MONITOR/CMD because MONITOR/CMD has its own keyboard and video routines. With separate keyboard and video routines, MONITOR/CMD does not move the cursor position and enables you to walk through MULTIDOS keyboard and video drivers. This feature is not available with ESOTERIC because the keyboard and video are banked.

PCOPY/CMD		Backup large files onto floppy diskettes.

				PCOPY<ENTER>

A large file is partitioned (segmented) into smaller pieces that fit onto floppy diskettes. PCOPY removes the file's extension and replaces it with its own recognizable extension: #??, where ?? is a number. e.g., MAIL/DAT becomes MAIL/#01, MAIL/#02, etc. Each partition diskette has a control sector enabling you to restore the original file in any sequence. And PCOPY keeps track of the diskettes disallowing you to recopy the same diskette twice.

Good operating practices for PCOPY:
All of your files to backup should have a unique filename with any extension.
e.g., CONTROL/DAT, MESSAGE/ASC, CUSTOMER/DAT, FILE/TXT, etc.

It is recommended that the extension should not be used to distinguish files.
i.e., CONTROL/DAT and CONTROL/TXT would appear the same when partitioned on backup diskettes. i.e., both would appear as CONTROL/#??, where ?? is a number.

Filenames without an extension could be inadvertently deleted when REMOVE is used to remove a backup partition. To put it another way, the /#01 extension is not recognized as part of the filename under normal operating conditions ── the # becomes a delimiter. Although REMOVE sends the complete filespec FILENAME/#??:d (d is the drive number) to Open/DOL, Open/DOL looks for FILENAME/ on all mounted disks according to the normal DOS search. You can set bit 5 of SM0 (see ZAP 001 last paragraph, change the byte from 00 to 20) to disable REMOVE from removing a file without an extension. Obviously, PCOPY sets bit 5 of SM0.

Please use extensions.

General Operating Characteristics for PCOPY/CMD:

 1.	The destination drive cannot be the same as the source drive.

 2.	A system disk must always be in drive zero with Allocate/DOL, Close/DOL, Command/DOL, Error/DOL, and Open/DOL.

 3.	All disks must be initially mounted and all partition (destination) diskettes must be formatted.

 4.	Each backup partition must be on separate diskettes.

MAX-80, MODEL 4, and ESOTERIC
 5.	Cannot be executed from SUPERBASIC and return to SUPERBASIC. If PCOPY is executed from SUPERBASIC via CMD"PCOPY", then PCOPY exits to DOS when complete.

BACKUP ── making partitions of a file
PCOPY is menu driven and keeps you posted on the backup and/or restore process. If the destination diskette has enough free space to hold the backup file, then PCOPY merely copies the file. When PCOPY is executed the following screen appears:

	File Backup/Restore Version 2.01, (c) 2004 V. B. Hester

	 Reading record 00000
	 Records written 00000

	Backup or Restore (B/R)?

The prompt message "Backup or Restore (B/R)?" is waiting for you to press either or <R> followed by <ENTER>. This prompt defaults to if just <ENTER> is pressed. You can press <BREAK> at this point to exit to DOS.

If <ENTER> is pressed, then the following additional prompt appears:

	Filespec to Backup:

Enter the filespec to back up without a password. e.g., the file CONTROL/DAT on logical drive 3 with the password UNCLE would be entered as:

	Filespec to Backup: CONTROL/DAT:3

At this point, PCOPY searches for the file on logical drive 3.

If you response to this prompt is CONTROL/DAT (without a drivespec), then PCOPY performs the normal DOS search for the filespec.

After you enter the filespec and DOS finds it, a message and prompt similar to the following appears:

	Filespec to Backup: CONTROL/DAT:3
	The complete file has 01500 records.

	Destination drive?

The 01500 in the message is the size in physical records (sectors) of the source file that will be partitioned onto floppy diskettes. It is possible at this time to calculate the number of diskettes required to hold all partitions. Your configuration is probably different than others; therefore, PCOPY does not indicate a finite number of diskettes required (also PCOPY does not require that all of the diskette space be available). Nevertheless, here is a table of the number of free sectors that you can use to calculate the required number of floppies.

																40 cyls					80 cyls
	SingleSided/Single Density		 384						 784
	DoubleSided/Single Density		 774						1574
	SingleSided/Double Density		 695						1415
	DoubleSided/Double Density		1397						2837

The actual number of free sectors is one more than this table indicates, because PCOPY uses one sector on each partition diskette as a control sector.

You can press <BREAK> at the "Destination drive? " prompt to return to DOS. Or you can enter the logical drive number for mounting all floppies to receive the partitions. PCOPY does not allow you to use multiple logical drives to mount partition diskettes on for either backup or restore.

NOTE: PCOPY expects all disks to be initially mounted and all partition (destination) diskettes to be formatted.

If a diskette is in the logical drive entered, PCOPY proceeds to start the backup. If the file to backup fits on the mounted diskette, PCOPY simply copies it to the diskette in the destination logical drive (does not add the control sector either). However, you are probably using PCOPY to make a backup of a file that is too large for the floppy drives you have. In this case, PCOPY uses all the space on the mounted floppy (it doesn't have to be blank ── it may have other files on it) and prompts you to insert another diskette with the following message:

	Mount next disk in logical drive d
	PRESS ANY KEY WHEN READY.

Where d is the logical drive number you previously entered. If typeahead is active, a simple key touch is all that is required. If typeahead is not active, then you will have to hold a key down until the message disappears. If you do not mount a different diskette, then PCOPY responds with the following message:

	There is NO space on that disk!
	Mount next disk in logical drive d
	PRESS ANY KEY WHEN READY.

If you remove the previously mounted diskette and press a key before you mount a different diskette, then PCOPY responds with this message (with ZAP 002 applied):

	Drive not available.
	<KEY> when corrected, <BREAK> to abort.

without ZAP 002 applied (and a longer time):

	Hash index table read error.
	Drive not available.
	<KEY> when corrected, <BREAK> to abort.

You will be continually prompted to insert different floppies until the backup is complete, indicated with this message (and tone):

	BACKUP COMPLETE.

If the destination diskette has enough space to hold the original file, then the message:

	COPY COMPLETE

appears.

Status messages for backup
The numbers on the upper message area keep you posted on the backup.

	 Reading record 00000

indicates the records read from the original file. This number continue to increase until it matches the number in the message

	The complete file has 01500 records.

Keep in mind that these are physical records not logical records. e.g., if your file has 24,000 logical records of 16 bytes each, then 1,500 physical records (24000 16) are required.

The message:

	 Records written 00000

indicates the number of physical records written to a mounted floppy diskette. This number starts out at one for each floppy diskette. Also, you will notice for the first partition that the number of records written is one more than the number of records read. Remember, the floppy diskette has an additional sector used for restore control. After a floppy diskette is full, the status number appears in a manner similar to the following:

	File Backup/Restore Version 2.01, (c) 2004 V. B. Hester

	 Reading record 01397
	 Records written 01398

	Backup or Restore (B/R)? B

	Filespec to Backup: MAIL/DAT

	The complete file has 01500 records.

	Destination drive? 6
	Mount next disk in logical drive 6
	PRESS ANY KEY WHEN READY.

After you have completed a backup, you will probably examine the partitioned directories. You will note the following:

All except the last partition has its logical record length (LRL) set to 256 (if the original file's LRL was 256, then the last partition has a LRL of 256 also). However, this information is in all of the control sectors, enabling you to restore in any order. The LRL information is only indicated on the last partition, because this is where the end of file (EOF) is for restoring the original file. If the original file does not end on a sector boundary (indicated by a EOF of ssss/bbb where bbb is not zero), then only the last partition has an EOF not equal to zero.

RESTORE ── merge partitions into a complete file
If you respond <R><ENTER> to "Backup or Restore (B/R)? ", PCOPY changes the display to:

	File Backup/Restore Version 2.01, (c) 2004 V. B. Hester

	 Reading record 00000
	 Records written 00000
	Restored record written 00000

	Backup or Restore (B/R)? R

	Filespec to Restore:

PCOPY added the status line "Restored record written 00000".

At the "Filespec to Restore: " prompt, only enter the filename portion of the partitions. It is highly recommended that you include the drivespec, because PCOPY searches for FILENAME/#?? without using the hash index table (HIT). This is a very slow process without a drive number.

Example of the better response to the "Filespec to Restore: " prompt:

	For the original file, MAIL/DAT, that was backed up into partitions, and is about to be restored from a diskette in logical drive 6, enter MAIL:6

If you enter the partition filespec without a drivespec, PCOPY (via the normal DOS search) searches (long time) for the file and, if found, establishes the source logical drivespec.

After you enter the filespec and DOS finds it, a message and prompt similar to the following appears:

	Filespec to Restore: MAIL:6
	The complete file has 01500 records.

	Destination Drive?

The 01500 in the message is the size of the original file not the size of the partition diskette mounted (each partition diskette has this information in a control sector). Also the status message "Reading record 00000" was changed to "Reading record 00001", indicating only the control sector was read. The "Destination Drive? " prompt is for the disk to have the complete original file. You can press <BREAK> here to return to DOS or enter the logical drive number to hold the complete file.

After PCOPY reads the rest of the partition file and writes out the data to the disk in the destination drive, you are prompted with the following:

	Mount next disk in logical drive d
	PRESS ANY KEY WHEN READY.

Where d is the logical drive the first partition diskette is mounted in.

If you press a key without mounting a different partition diskette, then the following appears:

	Mounted disk was read before.
	Mount next disk in logical drive 6
	PRESS ANY KEY WHEN READY.

PCOPY maintains a table of the starting position for each partition diskette. In this case the same starting position was found and PCOPY refused to rewrite this information (the table limit for starting positions is 110).

If you remove that partition diskette and press a key before you mount a different partition diskette, then PCOPY responds with this message.

	Drive not available.
	<KEY> when corrected, <BREAK> to abort.

If you inadvertently mount a diskette without a partition of the file to restore, then PCOPY responds with this message:

	File not in directory.
	<KEY> when corrected, <BREAK> to abort.

If you mount a diskette with a different version than the first partition read of the original file, then PCOPY responds with:

	The version on mounted disk is different.
	Mount next disk in logical drive 6
	PRESS ANY KEY WHEN READY.

You will be continually prompted to insert different partition diskettes until the restore is complete, indicated with this message and a tone:

	RESTORE COMPLETE.

The maximum file size that PCOPY can handle is 65534 physical records/16,776,960 bytes. This is one physical record (256 bytes) less than the DOS can handle.

Status messages for restore
The numbers in the upper message area keep you posted on the restore.

	 Reading record 00000

indicates the records read from each partition diskette. This number changes to 00001 when the control sector is read (it also stops at 00001 for each subsequent partition; however, if everything is apparently correct, it immediately increases to the number of records read from a partition).

The message:

	 Records written 00000

indicates the number of physical records restored. This number continues to increase until it matches the number in the message "The complete file has 01500 records"

The message:

	Restored record written 00000

is the relative physical record restored. Depending on the sequence of mounting partition diskettes, this may or may not track the number in the message "Records written 00000". If the partition diskettes are mounted in the sequence /#01, /#02, etc., then this tracks the numbers in the message "Records written 00000".

Also, you will that notice the number in "Reading record 00000" is one more than the number in "Records written 00000" for restoring the first partition diskette. Remember, the partition diskettes have an additional sector for restore control. You will receive a display similar to the following after restoring the first partition:

	File Backup/Restore Version 2.01, (c) 2004 V. B. Hester

	 Reading record 01398
	 Records written 01397
	Restored record written 01397

	Backup or Restore (B/R)? R

	Filespec to Restore: MAIL:6
	The complete file has 01500 records.

	Destination Drive? 2
	Mount next disk in logical drive 6
	PRESS ANY KEY WHEN READY.

Error messages
An error message you can encounter with PCOPY is:

	That file is empty!

PCOPY does not attempt to backup or copy an empty file.

	Insufficient space on that volume!

This is presented just before PCOPY exits when the destination disk is perceived to be non-removable. i.e., the destination is MEMDISK or a hard disk volume and there is insufficient space to hold the original file.

Of course you can receive the DOS error:

	Write protected media.

With this error, PCOPY exits. Be sure all disks to receive partitions are write enabled. If this message appears because CONFIG has the destination drive write protected, then this error occurs when you attempt to write on the first partition. You have to exit anyway to write enable the drive.

Whenever the prompt:

	<KEY> when corrected, <BREAK> to abort.

appears, you can press <BREAK> to exit PCOPY.

Another error message you might encounter with PCOPY during restore is:

	File partitions were incorrect.
	RESTORED FILE IS NOT CLOSED AND IS INCORRECT!

This occurs if you made more than one set of backup partition diskettes with different amount of free space and mixed them during the restore operation. Although the table on page 67 indicates the amount of free space on a newly formatted diskette, you can partition files on diskettes with other data. If you want additional sets of backup partitions, I recommend using VFU or FU to copy the partitions onto other diskettes. PCOPY will not mix different partition diskettes if the original file was modified before you made another set of backup diskettes.

Of course you can receive the DOS error:

	Write protected media.

With this error, PCOPY exits. Be sure the disk to restore the original file to is write enabled. If this message appears because CONFIG has the destination drive write protected, then this error occurs when you attempt to restore the first partition. You have to exit anyway to write enable the drive.

MODEL I and MODEL III
PRT/CMD			Forms and Printer Filter (highmemory)

				PRT<ENTER>

PRT/CMD is a high memory, menu driven forms filter and EPSON™	graphics character converter. PRT/CMD is required to enable the LIBRARY command FORMS. After PRT<ENTER> is executed, the prompt:

				‘FORMS FILTER 3.0 – Copyright (c) 2000, Vernon B. Hester
				 Enter decimal code to be ignored. _’

is displayed. Enter a decimal number (1 to 255), one at a time. PRT/CMD allows up to ten values to be filtered, i.e., do not get to the printer. If you do not want to filter a value or have entered all values, press <ENTER>. Next, the prompt:

				‘Graphics conversion for EPSON (tm) printer (N/Y)? ’

Enter <Y> if you have and EPSON™ printer (does not work with GRAFTRAX PLUS) capable of printing TRS-80® video graphics and require an adjustment of 20H; otherwise, press <N> or <ENTER>. The LIBRARY command RESET or RESET (T) removes PRT/CMD from high memory.

MAX-80, MODEL 4, and ESOTERIC
PRT/CMD			Printer Character Trap (highmemory)

				PRT b1[,b2][,b3][...b33]<ENTER>
				PRT<ENTER> to display the values trapped.

				b1, b2, … b33 = values to trap

PRT/CMD accepts the first 33 values entered on the command line and inhibits these values from going to the printer (traps these values). If additional values to trap are desired, reissue the PRT b1,b1,b2... command until you have loaded all the desired values to trap. The LIBRARY command RESET or RESET (T); or, the utility MODULE/CMD removes PRT/CMD from highmemory.

RA/CMD		Reverse Assembler (disassembler)

				RA[(H)|(HD)|(Z)]<ENTER>

				 H = help
				HD = HD64180 microprocessor (XLR8er™ modification for the MODEL 4)
				 Z = Z80® microprocessor (MODEL I/III, MAX-80, approximately with emulators)
							If neither HD nor Z is specified, RA/CMD defaults to the present microprocessor.

In the Z80® mode, RA/CMD disassembles 1,136 Z80® instructions. The same 1,136 instructions ZEUS/CMD assembles. In the HD64180 mode, RA/CMD disassembles 730 instructions. The 730 instructions are 697 common Z80® instructions and the 33 additional instructions available with the HD64180 (the HD64180 mnemonics are abbreviated). RA/CMD disassembles object code from either memory or a standard TRS-80® load module. You can direct the disassembly to the display (default) or device assigned to the printer DCB – see options. In addition, you can create source code in ASCII format (default /TXT) that can be read into ZEUS with the # filespec modifier.
e.g., ZEUS #filespec/TXT; or, once ZEUS is invoked: L#filespec/TXT.

Upon executing RA/CMD, the screen clears and the following prompt appears:

		Memory or disk object (M/D)? _

		<ENTER> or <M><ENTER> for object code in memory.
				All addresses in RA/CMD are one to four hexadecimal digits without the H suffix, and default to 0000H.

				The options available for object code in memory are NP for no pauses and PRT to direct the output to the device in the printer DCB. (Byte count is hexadecimal.)

		<D><ENTER> for object code from a disk file.
				Disk files default to a /CMD extension. i.e., to disassemble DDT/CMD, enter DDT and to disassemble DOGPATCH enter DOGPATCH/

				The options available for object code from a disk file are:
				 NP = No Pauses
				PRT = Output to PRinTer (sets NP, i.e., does not pause)
				NIP	=	No Instructions Printed (the cross reference printed)
				NLR	=	No Location Reference (resets NIP, i.e., disables NIP)
				STF	=	Source To File – default extension /TXT (sets NP, resets NLR and NIP)
			 F&&& = First label name. AAA through ZZZ (wraps around) default TAA
				REA	=	Reference Enable All default except for reference type y - DEFB
				RDA	= Reference Disable All
				RE%	=	Reference Enable % type
				RD%	=	Reference Disable % type
						The reference types are:
							c = CALL mn									m = LD (mn),A									r = JR mn
							i = IN A,(n) or IN0 r,(n)		n = LD r,n										s = LD rr,mn
							j = JP mn										o = OUT (n),A or OUT0 (n),r		t = LD rr,(mn)
							k = LD (mn),rr							p = op [A,]n									w = LD A,(mn)
							y = DEFB n
							Where: n = byte 0 to FFH, mn = word 0 to FFFFH, r = 8 bit register, and
										 rr = 16 bit register pair

To pause disassembly, press <SPACE>. To single-step after pausing, press <SPACE>. To continue, press <ENTER>. To stop, press <BREAK>. Pressing <BREAK> causes ‘Another disassembly (Y/N)? ’ to appear. <ENTER> or <Y><ENTER> re-starts RA/CMD. <N><ENTER> or <BREAK> exits RA/CMD.

For object code from a disk file, once the file is successfully opened, RA/CMD asks you ‘Offset addresses by? ’. This adds the offset to the load addresses in the disk file. And, the next prompt ‘Starting address? ’, asks you for the address (added to offset, if specified) you want from any valid location in the disk file. <ENTER> starts you at the beginning of the file – and not necessarily the lowest address. Pressing <ENTER> for both queries directs RA/CMD to show the file as is.

For object code from a disk file, on a disassembled instruction output line, the number of references to any address in this line is displayed in the first column – maximum 0FH; and, if any reference is not to the leftmost byte (starting address), then the offset to the leftmost byte is displayed as a displacement to any reference to the addresses on this disassembled line.

		EXAMPLE:
			2C 8905 LD				A,0
				 8907 INC			A
				 8908 LD				(8906H),A

		The bit pattern for the offset is 1100 (the C in 2C); therefore, there are two references to either addresses 8905H and 8906H (you can see one of them at 8908H). The leftmost bit (the first 1 in 1100) is set because there is a reference to 8905H. This reference most likely is a JP, JR, or CALL. If there were no references to 8905H, then the output lines would be:
			14 8905 LD				A,0
				 8907 INC			A
				 8908 LD				(8906H),A

		Here we have an offset of 0100 (the 4 in the 14) that means there is no reference to 8905H and a reference to 8906H.

For object code from a disk file, the location reference table (if not inhibited) displays in ascending order all addresses referenced and the type of reference. If you want to see references to a byte in a DEFB instruction, then you must enable reference type y with REY (case not significant) as a response to ‘Option:’

		EXAMPLE:
		4411	FFBFk
		44D2	FFC8j FFD9c

		Location 4411H is referenced at FFBFH by an instruction similar to LD (4411H),rr where rr is BC, DE, HL, IX, IY, or SP (most likely not SP).

		Location 44D2H is referenced at FFC8H with a JP 44D2H; and, 44D2H is referenced at FFD9H with a CALL 44D2H

RS/CMD		Memory Scanner.

				RS<ENTER>

RS/CMD scans memory and locates an 8 bit byte or 16 bit word specified. Enter the from and to addresses in one to four hexadecimal digits. Press <ENTER> if less than four hexadecimal digits. To reposition to the previous prompt, press <>.

			 'Word, or byte search (W/B)? _'

For a word search, press <W> or <ENTER>. For a byte search press . Next RS/CMD asks you to enter the search target. Enter up to four hexadecimal digits for word search or up to two hexadecimal digits for byte search. To reposition to the previous prompt, press <>.

Next, for word scans only, the prompt:

			 'Auxiliary mnemonic? _'

is displayed. You can, optionally, inquire about calls, jumps, and loads to a selected word at this time. Enter one or more of the following:

				 C = call/carry
				 J = jump
				 L = load
				 M = sign minus
				NC = non-carry
				NZ = non-zero
				 P = sign positive
				PE = parity even
				PO = parity odd
				 Z = zero

The above terms may be combined if needed (e.g., CNZ for CALL NZ,word). If no auxiliary mnemonic is desired press <ENTER>. For the L (LOAD) command, the following question

			 'Immediate, or Extended Addressing (I/E) '

is displayed. If the response is E, then:

			 'From, or to the register (F/T) .'

is displayed. Answer as desired.

Next the query:

			 'Accumulator A or, register pair BC, DE, HL, SP, IX, IY :__'

is displayed. Enter A or the desired register pair. RS/CMD displays the hexadecimal locations where the specified byte or word is found.

Please note that the start of the overlay area is used as scratchpad and the search byte or word is ‘mirrored’ in this area. i.e., false positive. Also, some finds may be part of two different instructions; therefore, use RA/CMD to verify the search results.

MODEL 4 and ESOTERIC
SETCOM/CMD			Set or display RS-232-C parameter values

Please see SETCOM in the LIBRARY COMMANDS section.

[bookmark: OLE_LINK4]SHOW/CMD Real time display of selected byte(s) or word(s) (not MAX-80)

				SHOW [W]addr1,[W]addr2<ENTER>

				addr1 = first byte or word (hexadecimal without an H suffix)	
				addr2 = second byte or word (hexadecimal without an H suffix)	

SHOW/CMD displays the contents of one word, or one byte, or two words, or two bytes, or one word and one byte in the upper right corner of the display. If two values are specified, then SHOW/CMD displays the second value to the left of the first value. Show reassigns background task slot six (two if Model I or Model III) to display the first value; and, if specified, background task slot seven (three if Model I or Model III) to display the second value. A byte value is the default for the address entered. If you want a word value displayed, precede the address with a W.

EXAMPLE:
	To display the cursor refresh RAM location and the ROW/COLUMN in the upper right using Model 4 MULTIDOS:

	SHOW W4023,W4020

SHOW/CMD can be removed by the LIBRARY command RESET or the utility MODULE/CMD.

MODEL I and MODEL III
SPOOL/CMD	RAM printer buffer (SPOOLER)

				SPOOL<ENTER>

SPOOL/CMD is a high memory printer buffer that uses background task slot one. SPOOL/CMD requires PRT/CMD (printer filter) to be activated. Upon execution of SPOOL<ENTER>, the following prompt appears:

						How many 256 byte BLOCKS for SPOOLING (default 9, 1-99)? _

Enter the BLOCK size for the spooler. <ENTER> or an invalid input defaults to 9 BLOCKS.

You have some control of spooling while the spooler is active. To activate this control, press <RIGHTSHIFTBREAK>. The spooling is suspended and an S appears in the upper right of the display. Pressing <N> removes the spooler from high memory and resets background task slot one. Pressing <Y> changes the S to a B. With a B in the upper right of the display, pressing <Y> resumes spooling and <N> empties the spooler and sends a carriage return to the printer. Also, the LIBRARY command RESET removes the spooler from high memory and resets background task slot one.

MODEL I, MODEL III, and MAX-80
SSAVER/CMD	Screen Saver

				SSAVER[(M=m[,T]<ENTER>
				SSAVER (H)<ENTER>

				m = minutes to wait before SSAVER/CMD blanks the screen; default = 3
				T = do not suspend background tasks when screen blanks

SSAVER/CMD protects the screen from burned-in characters or images by saving the screen contents and blanking the screen when there is no activity for a selected time period. Activity is defined as: a key press while an application is scanning the keyboard; or, the screen is being updated in more than one position.

The maximum time period depends on the hardware interrupt rate: MODEL I at 40 per second is 27 minutes, MAX-80 at 61.04 per second is 17 minutes, and the MODEL III at 30 per second is 36 minutes.

The screen is restored by any key that returns a value when pressed, i.e., not <SHIFT>. This key press only restores the screen and is absorbed by the screen saver.

SSAVER/CMD loads into high memory and can be removed by the LIBRARY command RESET and for the MAX-80 removed by the utility MODULE/CMD.

MODEL 4 and ESOTERIC
SSAVER/CMD	Screen Saver

				SSAVER[(M=m[,T][,E][,U][,S]<ENTER>
				SSAVER (H)<ENTER>

				m = minutes to wait before SSAVER/CMD blanks the screen; 1 to 18, default = 3
				T = do not suspend background tasks when screen blanks
				E = directs SSAVER/CMD to use bank 2 of expanded memory bypassing MegaMEM
				U = directs SSAVER/CMD to use bank 3 of expanded memory bypassing MegaMEM and bank 2 of expanded memory
				S = directs SSAVER/CMD to use standard memory (in high memory) bypassing MegaMEM, bank 2 of expanded memory, and bank 3 of expanded memory.

With no memory directs, SSAVER/CMD uses this sequences for the screen buffer: tests if MegaMEM is available, if no MegaMEM tests if bank 2 of expanded memory is available, if bank 2 is not available, tests if bank 3 of expanded memory is available, if bank 3 of expanded memory is not available, uses high memory as the screen buffer.

SSAVER/CMD protects the screen from burned-in characters or images by saving the screen contents and blanking the screen when there is no activity for a selected time period. Activity is defined as: a key press while an application is scanning the keyboard; or, the screen is being updated in more than one position.

The screen is restored by any key that returns a value when pressed, i.e., not <SHIFT>. This key press only restores the screen and is absorbed by the screen saver.

SSAVER/CMD can be removed by the LIBRARY command RESET or the utility MODULE/CMD.

SYSGEN/CMD	System disk generator. (not ESOTERIC)

				SYSGEN<ENTER>

SYSGEN/CMD creates a MULTIDOS system diskette on a formatted disk that usually has a configuration different than the MULTIDOS master diskette.

MULTIDOS supports the following types of onevolume system diskettes:

																							Model I │ Model III │ Model 4
		1. Single sided, single-density						 Y │ N │ N
		2. Single sided, double-density Y │ Y │ Y
		3. Single sided, pseudodouble-density Y │ Y │ Y5
		4. Double sided, single-density Y │ N │ N
		5. Double sided, double-density Y │ Y │ Y

In addition, for twovolume formats, the following types of system diskettes are supported:
																							Model I │ Model III │ Model 4
		6. Single density Y │ N │ N
		7. Double density Y │ Y │ Y
		8. Pseudodouble-density Y │ Y │ Y5

NOTE 5: Types 3 & 8 are not recommended for Model III/4.

MULTIDOS has the capability to communicate with, in addition to the eight supported system formats, the following onevolume format.

		9. Double sided, pseudodouble-density.

SYSGEN/CMD is designed to create a different type of onevolume system diskette (1 through 5) from any of the eight supported system formats.

When the initial query

		'Drive of the source SYSTEM disk or * for setup (07 or *)? _'

appears, press the logical drive number that has a complete MULTIDOS system disk mounted. At this point you receive the DCT setup menu. The DCT setup menu only can be modified with the arrow keys, and requires nonconflicting parameters when setting up a drive. To describe the nonconflicting parameters, please read the following carefully:

Legend used for describing floppy diskettes and drives:

			SS = single-sided
			DS = double-sided
			SD = single-density
			DD = double-density
			PD = pseudodouble-density
	 SS/SD = single-sided single-density
	 SS/DD = single-sided double-density
	 SS/PD = single-sided pseudodouble-density
	 DS/SD = double-sided single-density
	 DS/DD = double-sided double-density
	 DS/PD = double-sided pseudodouble-density

The number of sectors per cylinder must match the following table for 3½" or 5¼" floppy diskettes.

		 SD 					 DD 					 PD________

		10 SS, 20 DS					18 SS, 36 DS					10 SS, 20 or 40 DS

The directory file size must be 12 or greater.

Normal characteristics for a DS diskette are:

		Media = 5" FLOPPY,
		Type = SINGLE DENSITY,
		Number of sides = 2,
		Step code = 0,							{0 = 6mS, 1 = 12mS, 2 = 20mS, and 3 = 30mS}
		Directory cylinder = 17,
		Sectors per granule = 5,
		Granules per cylinder = 4,
		Directory file size = 18.

		Media = 5" FLOPPY,
		Type = DOUBLE DENSITY,
		Number of sides = 2,
		Step code = 0,						{0 = 6mS, 1 = 12mS, 2 = 20mS, and 3 = 30mS}
		Directory cylinder = 17,
		Sectors per granule = 6,
		Granules per cylinder = 6,
		Directory file size = 32.

Before we continue with SYSGEN/CMD, let's understand more about floppy diskettes:

The minimum unit in reading from and/or writing to a floppy diskette is one sector. A sector is 256 contiguous bytes of data on the same track.

The minimum diskette space allocated for a file is one granule. A granule is 1 to 64 contiguous sectors. A granule may span more than one track and/or cylinder.

For SS diskettes, the track size is the same as the track capacity of the disk drive. For DS diskettes, the track size is twice the disk drive's track capacity. The disk drive's track capacity is the physical cylinder size of the floppy diskette. DS diskettes have twice as many tracks as it has cylinders. We can conclude from this that a cylinder is one read/write position of the disk drive's head, and a track is one recording surface. (This definition is used for rigid drives also, e.g., a twoplatter, fourhead rigid drive, has four tracks per cylinder). The number of tracks per cylinder is the number of heads the operating system is using per cylinder.

What about PD?
PD uses logical tracks. NEWDOS/80 defines a logical track as a lump. A logical track or lump consists of a multiple of whole granules. And, a logical track can span more than one track and/or cylinder. The operating system handles the physical conversion to properly locate the read/write head. Model I system diskettes require track zero, sector zero to be formatted in single-density. Model III system diskettes require track zero, sector one to be formatted in double-density. MULTIDOS formats the entire track zero in single-density for Model I PD diskettes. However MULTIDOS can read PD diskettes with track zero formatted in either single or double-density. NEWDOS/80 can create PD diskettes with track zero formatted in either single-density or double-density (Model III NEWDOS/80). Nevertheless, a PD diskette with track zero formatted in a different density must render track zero inaccessible during normal operation (track zero is only recognized during boot).

Why PD?
DBLDOSTM, the original double-density operating system for the TRS80®, published by Percom, was apparently designed to minimize the tearup of NEWDOS/21 (NEWDOS/21 is a modified version of TRSDOS® 2.1) and maximize compatibility with existing software. Actually DBLDOSTM only modified SYS0/SYS and BASIC/CMD (BASIC/CMD was modified to disable several of the NEWDOS/21 enhancements to BASIC). The major modification to SYS0/SYS was switching between the single-density and double-density controllers and enabling the system to have 192 logical tracks. Effectively, the only required change was to the file SYS0/SYS. You can see why this method was used ── go double-density with ONE file changed. Also, PD yields a smaller granule (five sectors) and is much more efficient (even faster) for a system diskette. The most efficient MULTIDOS Model I SS/DD configuration is a PD system with DD data disks.

To make a Model I PD system diskette (single-sided only), format a diskette in PD and use SYSGEN/CMD to copy the required files to the newly formatted diskette. When SYSGEN/CMD asks for the PHYSICAL CYLINDERS, key in the track capacity of your drive ── this is probably 40 or 80 (the actual number of logical tracks is the number of physical tracks [less 1 if cylinder zero is single-density] multiplied by 1.8, e.g., 35 track drive has 61 logical tracks, and a 40 track drive has 70 logical tracks).

If you want to make a Model I onevolume, double-density, double-sided system diskette, track zero must be formatted in single-density in order for the Model I ROM to boot the system. The fastest way to accomplished this with MULTIDOS is to set the configuration to "(SI=2)", and format the diskette in double-density. After a successful format, set the configuration to "(SI=1)" and format track zero single-density using ZAP/CMD's format ("T" option).

i.e., (Assumes destination diskette is in drive 1)

		CONFIG :1 (SI=2)<ENTER>
		FORMAT :1<ENTER>				 {you must input additional data for FORMAT}
		CONFIG :1 (SI=1)<ENTER>
		ZAP<ENTER>
		<T><1><ENTER>
		<0><ENTER>
		<S><F3>

Now execute SYSGEN/CMD to copy the system files to the properly formatted diskette.

Now Back to SYSGEN/CMD:
After you have setup the DCT correctly, you will receive the query:

			 'How many PHYSICAL cylinders for the destination disk? ..'

Enter the number of TRACKS the drive is capable of handling.

The next query is:

			 'The destination disk is in PHYSICAL drive (07)? .'

Floppies are in physical drives 0 through 3 (this is asking you what position on the drive cable is the floppy to receive the system files).

The next query is:

			 'Do you want the DCT locked (N/Y)?

Press <ENTER>. Be certain a properly formatted diskette is in the destination logical drive when you press <ENTER> to the prompt:

			 'Press <ENTER> when the destination disk is in drive x'

SYSGEN/CMD copies all of the /DOL, /EXT, and /BOL files to the destination disk. The rest of the files should be copied via VFU in order to maintain the protection level and directory attributes.

If you want to create a system disk on a rigid drive, please follow the instructions that come with the rigid disk driver diskette.

SYSGEN/CMD enables you to create a NEWDOS/80 type of system diskette.

EXAMPLE: (double-sided diskette for a 80 track drive)

		Media = 5" FLOPPY,
		Type = PSEUDODOUBLE DENSITY,
		Number of sides = 2,
		Step code = 0,
		Directory cylinder = 35,
		Sectors per granule = 5,
		Granules per cylinder = 8,
		Directory file size = 28.

This is a PDRIVE of: TI=A, TD=G, TC=80, SPT=36, GPL=8, DDSL=35, DDGA=6

MODEL III, MAX-80, Model 4, and ESOTERIC
Tx/CMD and TWO/IDO	Double sided, onevolume system diskette creator. Where x = 3 for the Model III, x = M for the MAX-80, x = 4 for the Model 4, and x = E for ESOTERIC.

				DO TWO<ENTER>

TWO/IDO is a do file for making a double-sided onevolume system diskette. This requires drive one to be capable of double-sided operations (i.e., you cannot make a double-sided diskette if drive one is single-sided). Before you execute TWO/IDO, make sure the file T3/CMD, TM/CMD, T4/CMD, or TE/CMD is present on the system diskette. To use TWO/IDO, place the master system diskette into drive zero, and another (doesn't necessarily have to be unformatted) diskette into drive one.

Key DO TWO<ENTER>. TWO/IDO executes and creates a double-sided onevolume system diskette in drive one (only the essential files are copied over to drive one, e.g., TWO/IDO and Tx/CMD are not copied). At this point you can take your new double-sided onevolume system disk out of drive one and reboot it in drive zero (provided, of course, that drive zero is capable of double-sided operations).

You can BACKUP this new system diskette to make more, but remember: you have to CONFIG the drive that you're BACKUPing to so that it is a double-sided onevolume drive. CONFIG 1(SI=2) would do that.

MODEL I and MODEL III
TAPE/CMD		Tape to disk transfer utility

			TAPE<ENTER>

TAPE/CMD transfers a 500 baud contiguous system program from tape to disk. When executed,

			‘Enter “T” to read TAPE, or “D” to return to DOS? ’

is displayed. Ready the tape deck, position the tape to the start of the program, and press <T>. If the program does not load properly or is not contiguous, an error message appears and the tape load terminates.

When the program loads successfully, indicated by:

			‘Is the PROGRAM “xxxxxx” to be modified? (Y or N)? _’

If you want the program to initially load at another address (e.g., to avoid clobbering DOS), then enter <Y> and

			‘Are interrupts to be enabled or disabled (E or D)? _’

is displayed. Enter <E> if the interrupts are to remain enabled, or enter <D> if interrupts must be disabled to execute the program. Next

			‘Enter new base address in HEX? ’

is displayed. Enter an address greater than the START address. The next prompt:

			‘Initialize LEVEL II type DCB and RST vectors (Y or N)? ’

Respond <Y> if the program requires a LEVEL II environment. If the start address is below 5200H, I recommend a LEVEL II environment.

If you responded N to ‘Is the PROGRAM “xxxxxx” to be modified? (Y or N)? _’, or have completed the modification response, the following query appears:

			‘Is a new filename required (Y or N)? ’

Enter <N> if you want to use the name of the program on tape with a /CMD extension. Or enter <Y> to receive this query:

			‘Filename please? _ ’

Enter the filename. Press <BREAK> at the nest prompt to exit TAPE/CMD.

VFU/CMD		Versatile File Utility (MULTIDOS) or FU/CMD (File Utility for ESOTERIC).

				[V]FU<ENTER>
				[V]FU %<ENTER> {To access /DOL and /EXT files.}

VFU/CMD enables you to select files from a directory format to:
				copy files from one disk to another,
				move files from one disk to another, and
				purge files.

VFU/CMD calculates the amount of free memory upon entry. If sufficient memory is available, VFU/CMD loads Open/DOL, Close/DOL, and Allocate/DOL into high memory, enabling you to copy, move, and/or purge without a system disk in drive zero. If insufficient memory is available, then the message:

	 'Insufficient MEMORY without a SYSTEM disk in drive zero.
				<KEY> to continue.'

appears, telling you to keep a system disk in drive zero.

VFU/CMD is ready for your command when:

			 'Versatile File Utility 12.0 (c) 2004, V. B. Hester

						 Press		 Action
							<C>			 Copy
							<E>			 Execute
							<H>			 Hard copy
							<M>			 Move
							<P>			 Purge

				Choice _'
is displayed. Key your choice. <ENTER> defaults to the first choice, and <BREAK> exits VFU.

VFU COPY COMMAND <C> and/or VFU MOVE COMMAND <M>
The MOVE command performs the same as the COPY command except, for MOVE, the files on the source drive are purged after the files are copied to the destination drive.

The copy command can be used to copy files from TRSDOS® Model III double-density diskettes to a nonTRSDOS® disk.

To copy files press <C> or <ENTER>. To move files press <M>. VFU/CMD responds with:

		' Versatile File Utility 12.0 (c) 2004, V. B. Hester
			Copy

					 Press		 Condition
						<A>			 Any condition.
						<C>			 Create file on destination disk.
						<D>			 Overwrite destination if dates are different.
						<O>			 Overwrite destination file.
						<S>			 Overwrite destination if sizes are different.
						<T>			 Update destination to later version.

			Choice _'

This screen enables you to select the conditions to meet before file copying can take place. MAX-80, MODEL 4, and ESOTERIC: Pressing <>, <↓>, or <> returns you to main menu.

	A =	Any. You may also press <ENTER> for this condition.
	C =	Create only. Only copy/move file(s) if the filename does not exist on the destination disk. Used to avoid overwriting a file with the same name.
	D =	Different date. Only copy/move file(s) if the filename exists on the destination disk and has a different date. This can be used to undo an update, provided you kept an earlier version.
	O =	Overwrite. Only copy/move file(s) if the filename exists on the destination disk.
	S =	size difference. Only copy/move file(s) if the filename exists on the destination disk and has a different length (different EOF).
	T =	Time and date difference. This is used when you want to update a file that was created or updated earlier – either the same day or a prior date.

When the source diskette is Model III TRSDOS®, only conditions A, C, and O are valid.

The next prompt is:

			 'Wildcardmask >_'

Enter the wild card mask as defined for the LIBRARY command DIR. VFU/CMD is limited to five logical OR masks. Or press <ENTER> to avoid excluding any files. MAX-80, MODEL 4, and ESOTERIC: Pressing <> in the first position returns you to main menu.

The next prompt is:

			 '<S> for selective, or <T> for total. _'

To select files to copy, press <S> or <ENTER>. For all files, press <T>.

If a wildcard mask was not specified then the next two prompts are:

			 'Include "INVISIBLE" files (N/Y)? _'

Press <N> or <Y> as appropriate (<ENTER> = <N>).

			 'Include "SYSTEM" files (N/Y)? _'

Press <N> or <Y> as appropriate (<ENTER> = <N>). Finally, VFU/CMD requests the source and destination drives with the following prompt:

			 'Source drive? _ Destination drive? _'

The source and destination drive cannot be the same. Press the number for the logical source drive, and press the number for the logical destination drive. [If you miskey the source drive, key in the same number as the destination drive to receive the source drive prompt!]

MAX-80, MODEL 4, and ESOTERIC: Pressing <>, <↓>, or <> returns you to main menu.

If the selective option was chosen, then the directory is displayed with a winking cursor next to the first filename. The arrow keys move the winking cursor in the arrow direction. If you want to copy the filename with the winking cursor, press <Y>. A marker appears in front of the filename, and the winking cursor moves to the next file. If you do not want to copy a file, press <N>, <SPACE>, or <> and the cursor moves to the next filename. During the file selection process, <SHIFT> positions the cursor to the first filename removing all markers. To remove a particular marker, use the arrow keys to position the cursor over the marker and press <N> or <SPACE>. If you move beyond the last filename, press <> to continue file selection.

If the total option was selected, then the directory is displayed with a marker in front of every filename. Use <> to position to a file that may be unselected with <SPACE>, or <SHIFT> to select all files.

The filenames with a marker next to them are the ones selected for copying.

After you have selected the files for copying, press <ENTER> to receive the prompt:

			 '<ENTER> to proceed, <A> to abort, or <R> to repeat. _'

Press <ENTER> to start the copy function. To terminate the copy function, before all files are copied, hold down one of the <SHIFT> keys until VFU/CMD completes copying the current file.

After the copy process is complete the prompt:

			 '<R> to redo, <I> to restart or <KEY> for resulting directory.'

is displayed. Press <R> to repeat the copying (usually to another destination diskette), <I> to go to the main menu or any key except <BREAK> to see the directory of the destination disk.

VFU EXECUTE COMMAND <E>
To execute a file, press <E>. The next two prompts are:

			 'Include "INVISIBLE" files (N/Y)? _'

Press <N> or <Y> as appropriate (<ENTER> = <N>)

			 'Include "SYSTEM" files (N/Y)? _'

Press <N> or <Y> as appropriate (<ENTER> = <N>). Finally, VFU/CMD requests the drive with the following prompt:

			 'Drive number? _'

MAX-80, MODEL 4, and ESOTERIC: Pressing <>, <↓>, or <> returns you to main menu.

Use the arrow keys to position the winking cursor in front of the file to be executed and press <Y>. The EXECUTE command commences when the <Y> is pressed. If the selected filespec does not have a /CMD extension, the EXECUTE command loads and executes BASIC/CMD, and attempts to run the filespec.

VFU PRINT DIRECTORY COMMAND <H>
To print a directory, press <H>. The next two prompts are:

			 'Include "INVISIBLE" files (N/Y)? _'

Press <N> or <Y> as appropriate.

			 'Include "SYSTEM" files (N/Y)? _'

Press <N> or <Y> as appropriate. Finally, VFU/CMD requests the drive with the following prompt:

			 'Drive number? _'

MAX-80, MODEL 4, and ESOTERIC: Pressing <>, <↓>, or <> returns you to main menu.

After the logical drive number is pressed, the prompt:

			 'Identification: _'

is displayed. Input your choice (8 characters maximum) to identify this disk. After you press <ENTER>, the directory is displayed on the screen. Finally, VFU/CMD prompts you with the following message:

			 'Press <A> to abort, <ENTER> to execute, or <R> to repeat. _'

A reply of <ENTER> prints the directory. If a 10 character per inch printer is used, the printout width fits inside a 5¼" diskette jacket.

VFU PURGE COMMAND <P>
To purge files from a disk, press <P>. The next prompt is:

	 'Versatile File Utility 12.0 (c) 2004, V. B. Hester
				Remove

				Wildcardmask >_'

Enter the wildcard mask as defined under the LIBRARY command DIR, or press <ENTER> to avoid excluding any files.

The next prompt is:

			 '<S> for selective, or <T> for total. _'

To select files to purge, press <S> or <ENTER>. For all files, press <T>. If a wild card mask was not specified, then the next two prompts are:

			 'Include "INVISIBLE" files (N/Y)? _'

Press <N> or <Y> as appropriate (<ENTER> = <N>).

			 'Include "SYSTEM" files (N/Y)? _'

Press <N> or <Y> as appropriate (<ENTER> = <N>). Finally, VFU/CMD requests the drive with the following prompt:

			 'Drive number? _'

Press the desired logical drive for file purging.

MAX-80, MODEL 4, and ESOTERIC: Pressing <>, <↓>, or <> returns you to main menu.

Files to be purged are selected similar to files to be copied. After you have selected the files for purging, press <ENTER> to receive the prompt:

			 '<A> to abort, <ENTER> to execute, or <R> to repeat. _'

Press <ENTER> to start the purge function. To terminate the purge function, before all files are purged, hold down one of the <SHIFT> keys until VFU/CMD completes purging the current file.

After the purge process is complete the prompt:

			 '<R> to redo, <S> to restart or <KEY> for resulting directory.'

is displayed. Press <R> to purge the same files (obviously from another diskette), <S> to go to the selection menu or any key except <BREAK> to see the directory of the destination disk.

ZAP/CMD		Disk sector/memory review/modification utility.

				ZAP<ENTER>

ZAP/CMD is a quick, simple way to copy disk sectors, read and modify disk sectors, read and modify file sectors, read and modify RAM, format a single cylinder, verify sectors, and fix MULTIDOS and ESOTERIC directories. The use of CAT[(T)] is highly recommended before you perform any disk feature.

General ZAP/CMD information

DEFAULTS
	When ZAP/CMD is waiting for your response, ZAP/CMD defaults to the first choice or lowest value if <ENTER> is pressed. Whenever an input field is complete, ZAP/CMD inserts an <ENTER> for you, i.e., if the query is "DENSITY (D/S) ." (one key press is required), pressing <ENTER> or <D> terminates the query and continues.

NUMBERS
	Numbers are interpreted as decimal, unless an H is appended to the number. If a number is suffixed with an H, then the number is considered hexadecimal.

FILENAMES
	Filenames are character case significant. i.e., zap/cmd is not the same as ZAP/CMD. However, you can force the filespec to upper case without using the <CAPS> key, by pressing the <> key at the Filespec prompt. Once <ENTER> is pressed, the case of keys reverts back to the keyboard setting.

BREAK KEY
	Pressing <BREAK> returns you to the previous query. When the "Choice" prompt is displayed, pressing <BREAK> exits ZAP/CMD.

MODIFICATION
	Pressing <M> after a displaying a page of MEMORY or a diskette SECTOR, puts you in the modification mode. This is noted by two transparent blinking cursors one in the HEX area and the other in the corresponding ASCII area (right 16 bytes). The arrow keys moves both cursors in the arrow direction. The <@> key toggles you between the HEX and ASCII modification mode, as indicated by the presence of Hex or Asc in the upper left hand corner. Key the new data for the bytes to be changed. Two keystrokes are required for hexadecimal changes, and one keystroke for ASCII changes. If you are in the HEX modification mode, pressing <Z> zeroes all bytes from the cursor position to the end of the page. Memory modification is effective immediately. However, sector modification is not effective until <ENTER> is pressed to terminate modification and <ENTER> is pressed a second time to update the sector.

MAX-80, MODEL 4, and ESOTERIC
RETURN TO "Choice" PROMPT
	Pressing <F1> returns you to the "Choice" prompt from anywhere in ZAP/CMD.

EXIT
	In addition to pressing <BREAK> at the "Choice" prompt to exit, pressing <F3> from anywhere in ZAP/CMD also exits ZAP/CMD.

Copy sectors <C>
	The Copy sectors option is obtained by pressing <C>. This option copies sectors from any disk MULTIDOS and ESOTERIC can read to any other disk MULTIDOS and ESOTERIC can read. However, you are cautioned to make sure the configuration byte for the source and destination disks have been set properly. These bytes are set correctly after a successful CAT[(T)] on both disks. The copy function automatically resolves overlaps when the same disk is used for the source and destination (in the same drive). Copy sectors cannot copy sectors between two different disks to be mounted in the same drive.

Disk sectors <D>
	The Disk sectors option is obtained by pressing <D>. This option steps through a single-density, double-density, or "P" density diskette, provided the target diskette has had its respective configuration byte updated - this byte is correct after a successful CAT[(T)]. This includes TRSDOS® double-density diskettes (Model I or Model III) and NEWDOS 80 diskettes. The selection of the first sector is menu driven; and, additional sectors are displayed by pressing:

		Key pressed		 Action

		<>						Increase cylinder by one
		 <>				Decrease cylinder by one
		[<SHIFT>]<>	Increase sector by one
		[<SHIFT>]<>	Decrease sector by one
		<C>						Reselect cylinder/sector
		<T>						Reselect cylinder(track)/sector
		<S>						Reselect sector

Form the Disk sectors option, you can direct ZAP to copy a sector by pressing <CTRL·C>

Directory entry <E>
	The Directory entry option enables you to locate the directory sector that contains the target filename. The filename to be entered exactly as the file name appears in the directory (character case significant). Enter the target file name at the

		'Filespec'

	prompt. If ZAP/CMD finds the directory sector of the file, ZAP/CMD is in the Disk sectors option.

File sectors <F>
	The File sectors option is obtained by pressing <F>, and accesses files, regardless of protection, density, and/or the operating system (except TRSDOS® Model I double-density). The filename to be entered exactly as the file name appears in the directory (character case significant). Enter the target file name at the

		'Filespec'

	prompt. ZAP/CMD finds the file, then

		'Relative sector in xxxxxxxx/xxx:x (0 to ddddd/hhhhH)'
	is displayed. The xxxxxxxx/xxx:x is the target file name with drive number, and ddddd/hhhhH is the highest relative sector in the target filename in decimal (ddddd) or hexadecimal (hhhhH). A number greater than ddddd/hhhhH displays the highest relative sector. Enter the desired relative sector. A file's first sector is relative sector zero; therefore, just <ENTER> displays the first sector of the file. You can access other sectors in the target file with the arrow keys.

		Key pressed 			 Action

		<> or [<SHIFT>]<>			Increase file sector by one
		<> or [<SHIFT>]<>			Decrease file sector by one

You can convert from File sectors to Disk sectors by pressing <CTRL·C>.

NOTE: ZAP/CMD cannot view a file with more than 53 segments.

Memory <M>
	The Memory option is obtained by pressing <M>. When the "Address" prompt appears, enter the desired address in decimal or hexadecimal with an H suffix. The memory address is changed by pressing the arrow keys.

		Key pressed		 Action

		<>						Increase address by 256/100H
		 <>				Decrease address by 256/100H
		<>						Increase address by one
		<SHIFT>			Increase address by 16/10H
		<>						Decrease address by one
		<SHIFT>			Decrease address by 16/10H

Format Cylinder <T>
	The Format Cylinder option is obtained by pressing <T>. This option formats and verifies a single cylinder on a floppy diskette. Don't be quick on the draw. The format density requires only one keystroke! Formatting a cylinder wipes out all data on that cylinder.

Verify <V>
	The Verify option is obtained by pressing <V>. This option determines if the target cylinders, sector by sector, are readable. If the target diskette has mixed density tracks, Verify switches densities automatically. Verify uses logical cylinders (LUMPS) when verifying a double-density and/or double-sided NEWDOS/80 diskette.

Check/Repair directory <X>
SYSTEM UTILITIES
SYSTEM UTILITIES
	The Check/Repair directory option is obtained by pressing <X>. This option is designed to fix the directories for MULTIDOS and ESOTERIC diskettes. Check/Repair directory also fixes the directory for alien diskettes; however, the data placed on the GAT sector may not be compatible with the alien diskette's operating system. If you fix the directory for an alien diskette, be sure you have the necessary information to modify the data on the GAT sector if the data was changed by Check/Repair directory.
Page 82
Page 81
Directory structure
The directory, usually named DIR/SYS, has information that details the disks usage, filenames, location, length, protection level, logical record length, and password hash values for all files on the disk. Each directory has three separate but integral sections:

 1.	The first sector, Granule Allocation Table (GAT), has the data on free and allocated space on the disk.
 2.	The second sector, Hash Index Table (HIT), has the hash codes for each active file on the disk.
 3.	The balance of the sectors contains the directory records (DIREC) for each file. Each DIREC is 32 bytes in length. The number of directory records varies with the density and number of sides for each disk.

GAT Organization
The granule allocation table is located on the first sector of the directory, containing information on disk space assignment. Disk space assignment is performed in a unit called a granule. A granule is a subdivision of a LOGICAL track that consists of a contiguous group of whole sectors. A PHYSICAL track is one of many concentric circular recording surfaces on a side of a diskette and/or a platter in a rigid drive. A cylinder is the head position for all identical numbered tracks in a given drive. A cylinder may have one track for single-sided floppy diskettes, eight tracks for a four platter rigid disk, six tracks for a three platter rigid disk, two tracks for a double-sided floppy diskette, etc. The number of tracks for a cylinder varies with the hardware configuration of the disk drive. However, the number of granules per LOGICAL track is fixed in accordance to the table below.

		Diskette	Granules/Track		Granules/Cylinder		Sectors/Granule

		 SS/SD					2										2										5
		 DS/SD					2										4										5
		 SS/DD					3										3										6
		 DS/DD					3										6										6

SS = single-sided, DS = double-sided, SD = single-density, DD = double-density

	TABLE 1

The GAT is divided into two tables. Bytes X'00' through X'5F' are the assignment/free table that corresponds to an individual cylinder on the disk. Each bit within the byte is used to indicate which relative granules within the cylinder is assigned or free. A reset bit indicates a free granule, and a set bit indicates an assigned granule.

		Hex 00 FFFF FFFF FFFF FFF8 F8FF FFFF FBFF FFFF
		 10 FFFF FFFF FFFF FFF8 F8F8 F8F8 F8F8 FAF8
		 20 F8F8 F8F8 F8F8 F8F8 FFFF FFFF FFFF FFFF
		Drv 30 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
		 2 40 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
		 50 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
		 60 F8F8 F8F8 F8F8 F8F8 F8F8 F8F8 F8F8 F8F8
		Cyl 75 F8F8 F8F8 F8F8 F8F8 F8F8 F8F8 F8F8 F8F8
		 17 80 F8F8 F8F8 F8F8 F8F8 FFFF FFFF FFFF FFFF
		11H 90 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
		 A0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
		Sec B0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
		 00 C0 FFFF FFFF FFFF FFFF FFFF FFFF 0542 E042B.B
		00H D0 4D55 4C54 4944 4F53 3130 2F30 312F 3835 MULTIDOS04/01/89
		 E0 0D20 2020 2020 2020 2020 2020 2020 2020 .
		DM F0 2020 2020 2020 2020 2020 2020 2020 2020

	Figure 1

Refer to the GAT table in figure 1.

Relative byte X'0C' has the value X'FB' (11111011). The bits set are 7,6,5,4,3,1,0. Therefore, granule 2 is free.

Relative byte X'1E' has the value X'FA' (11111010). The bits set are 7,6,5,4,3,1. Therefore, granules 2 and 0 are free.

Bytes X'60' through X'BF' are the available/locked out table that corresponds to a relative cylinder. The available/locked out table indicates which granules are locked out during formatting. A reset bit indicates an available granule, and a set bit indicates a locked out granule. All granules locked out during formatting are also assigned in the assignment/free table.

Hard disks and "P" density diskettes do not have an available/locked out table. If you use NEWDOS/80 diskettes (a form of "P" density) some have this table and others do not. If the number of LUMPS is greater than 96, then the balance of the available/locked out table should be set to FF.

Bytes X'C0' through X'CB' extends the assignment/free table from X'00' through X'CB' for hard disks, and are set to X'FF' for floppy diskettes.

Byte X'CC' contains the number of logical cylinders in excess of 35.

Byte X'CD' contains information about the diskette. (floppies)

		BIT 7		1 = DATA diskette.		0 = SYSTEM diskette.
		BIT 6		1 = Double density.		0 = Single density.
		BIT 5		1 = Double sided.			0 = single-sided.
		BIT 02	is one less than the number of granules per cylinder.

For "P" density diskettes and/or NEWDOS/80 diskettes updated with CAT :d(X), byte X'CC' contains the number of logical cylinders (LUMPS), and byte X'CD' contains the number of physical cylinders for the disk.

Bytes X'CE' and X'CF' contain the disk's master password hash code.

Bytes X'D8' through X'D7' contain the disk name, and bytes X'D8' through X'DF' contain the disk date.

Bytes X'E0' through X'FE' stores a system's disk AUTO command, if any. If byte X'E0' is X'0D', then there is no AUTO command.

HIT Organization
The Hash Index Table (HIT) is found on the second sector of the directory. The HIT is used to store, in a position that corresponds to the DIREC, the hash code for each active file in the directory. The hash code is computed by creating an 11 byte work space, eight for the filename (left justified and padded with spaces) and three for the extension (left justified and padded with spaces). This work space is processed through a hashing routine that produces a one byte value of X'01' through X'FF'. The HIT reduces the time required to access a file, through the operating system, by eliminating the need to check byte for byte each filename in the directory. After the system matches the hash code, the corresponding DIREC is examined for a byte for byte match of the filename/ext.

DIREC Organization
The third through the last directory sector contain 32 byte directory records (DIREC). The maximum number of directory records is 256, regardless of the number of sectors allocated to the directory. (The HIT storage is limited to 256.)

A file's DIREC sector can be displayed with ZAP/CMD. This option is obtained by pressing <E>, and requires the filename to be entered exactly as the file name appears in the directory (character case significant). Enter the target file name at the

		'Filespec'

prompt. If ZAP/CMD finds the file, then the sector with the filespec's DIREC is displayed and you are in the Disk sectors option.

DIREC+00	This byte contains several attributes of a file.

		Bit 7	If this bit is zero, then this DIREC is the file's primary directory entry (FPDE). If this bit is one, then this DIREC is the file's extended directory entry (FXDE). Extended entries are required when a file has more than four segments. The maximum number of granules per segment is 32; therefore, any file with more than 128 granules will have an extended directory entry.

		Bit 6	Overlay files must have this bit set. This is the system bit.

		Bit 5	Reserved for future use.

		Bit 4	This is the bit to indicate if a file is active or not, regardless of the other bits in DIREC+00, and/or bytes in the DIREC. If this bit is set, then the file is active. REMOVE resets this bit and removes the corresponding HIT byte. RESTOR resets this bit and recreates the corresponding HIT byte.

		Bit 3	If the bit is one, then the filename is hidden to directory display and/or print unless the invisible parameter, (I), is specified.

		Bits 2 through 0 Contain the access protection level of the file.

			111 = NONE
			110 = EXEC			EXECUTE
			101 = READ			READ, EXECUTE
			100 = WRITE			WRITE, READ, EXECUTE
			011 = not used	
			010 = RENAME		RENAME, WRITE, READ, EXECUTE
			001 = REMOVE		REMOVE, RENAME, WRITE, READ, EXECUTE
			000 = full			REMOVE, RENAME, WRITE, READ, EXECUTE, and change attributes without the access password

DIREC+01 and DIREC+02

	These two bytes contain the hash code for the access password.
	In a FXDE, DIREC+01 is the reverse pointer to the previous FXDE or FPDE.

DIREC+03

	The value of this byte indicates how many bytes the file extends into its last record.

DIREC+04

	This byte contains the file's logical record length.

DIREC+05 through DIREC+12

	These eight bytes contain the filename. The filename is left justified and padded with spaces.

DIREC+13 through DIREC+15

	These three bytes contain the file's extension, if any. The extension is left justified and padded with spaces.

DIREC+16 and DIREC+17

	These two bytes contain the date of the last update to the file. DIREC+16 bits 6 through 1 are the year; DIREC+16 bit 0 and DIREC+17 bits 7 through 5 are the month; DIREC+17 bits 4 through 0 are the day. NOTE: DIREC+16 bit 7 is reserved for system use. Bit 7 is set in DIREC+16 for BOOT/SYS, DIR/SYS, ESORES/SYS, SYSRES/SYS XESORES/SYS, and XSYSRES/SYS.

DIREC+18 and DIREC+19

	These two bytes contain the time of the last update to the file. DIREC+18 bits 7 through 3 are the hour; DIREC+18 bits 2 through 0 and DIREC+19 bits 7 through 5 are the minutes; DIREC+19 bits 4 through 0 are the seconds divided by two.

DIREC+20 and DIREC+21

	These two bytes contain the number of physical records in the file in LSB/MSB order.

DIREC+22 through DIREC+29

	These bytes, used as pairs, form four segment fields. If the first byte is an X'FF', then the file is contained in the previous segment fields. (If DIREC+22 = X'FF', then the file uses no disk space.) If the first byte is X'00' through X'FD' (X'FE' is not used), then it represents the cylinder this file segment starts on. The second byte has the starting granule (on the cylinder in the first byte) in bits 75, and the number of contiguous granules less one in bits 40.

DIREC+30 and DIREC+31

	These bytes point to a FXDE if DIREC+30 is a X'FE', otherwise DIREC+30 must be a X'FF'. The pointer, DIREC+31, has the relative file entry offset in bits 7 through 5, and the relative directory file sector in bits 4 through 0. Directories normally start on physical sector 0; therefore, physical sector 2 is relative directory file sector 0.

NOTE: DIREC+02 through DIREC+21 are not used for FXDE's.

DIRECTORY STRUCTURE
DIRECTORY STRUCTURE

		HEX	 DECIMAL			ERROR MESSAGE

		00				 0				No error.
		01				 1				undefined error in MULTIDOS and ESOTERIC
		02				 2				undefined error in MULTIDOS and ESOTERIC
		03				 3				Lost data during read.
		04				 4				Parity error during read.
		05				 5				Data record not found during read
		06				 6				Attempted to read system data record.
		07				 7				HARD DISK ERROR.
		08				 8				Drive not available.
		09				 9				undefined error in MULTIDOS and ESOTERIC
		0A				10				Due to memory usage, file can’t be extended. (MODEL I/III)
		0B				11				Lost data during write.
		0C				12				Parity error during write.
		0D				13				Data record not found during write.
		0E				14				Write fault on disk drive.
		0F				15				Write protected media.
		10				16				Drive not available.
		11				17				Directory read error.
		12				18				Directory write error.
		13				19				Improper file name.
		14				20				Granule allocation table read error.
		15				21				Granule allocation table write error.
		16				22				Hash index table read error.
		17				23				Hash index table write error.
		18				24				File not in specified directory.
		19				25				File access denied.
		1A				26				Directory space full.
		1B				27				Disk space full.
		1C				28				End of file encountered.
		1D				29				No record found.
		1E				30				Full directory. File can't be extended.
		1F				31				File not found.
		20				32				Improper drive number specified.
		21				33				undefined error in MULTIDOS and ESOTERIC
		22				34				Load file format error.
		23				35				Memory fault.
		24				36				Attempted to load ROM memory. (MODEL I/III)
		25				37				Access attempted to protected file.
		26				38				File has not been opened.
		27				39				Drive configuration one volume.
		28				40				Drive configuration error.
		29				41				Corrupt DIREC structure.

When an error occurs involving the directory, MULTIDOS and ESOTERIC generate two error messages. For example, if the disk in drive zero is write protected and an AUTO command is issued, MULTIDOS and ESOTERIC respond with:

		Granule allocation table write error.
		Write protected media.

Typically, you would use the second error message to resolve the problem.

Possible causes/Descriptions of errors:

Access attempted to protected file. ACCESS password given, but UPDATE password required.

Attempted to read system data record. Disk read of a directory cylinder without going through the MULTIDOS or ESOTERIC directory read routine.

Corrupt DIREC structure. – Link to an extended directory record is wrong. Or, primary directory entry has a link to an extended directory record that doesn’t require one.

Data record not found during read/write. The track, side, or sector number is not found. A flawed diskette causes this error, or a diskette formatted with different tracks per inch value than the drive it is in.

Directory read/write error. A read/write operation, involving the directory, failed. Refer to the second error message.

Directory space full. All DIREC slots are used. See ZAP/CMD for DIREC detail.

Disk space full. All granules have been assigned.

Drive configuration error. The DCT and the disk's configuration do not agree.

Drive configuration one volume. Side one selected for a logical drive with a single volume configuration.

Drive not available. Diskette not spinning in the selected drive.

End of file encountered. An attempt is made to read 1 unit past the EOF.

File access denied. Incorrect password given.

File has not been opened. An I/O attempt was made to an unopened file.

File not found. Filespec is not on any mounted disk.

File not in specified directory. Filespec is not in the specified directory.

Full directory. File can't be extended. A file is being expanded and requires an extended entry; however, there are no DIREC slots available.

Granule allocation table read/write error. A read/write operation, involving the GAT, failed. Refer to the second error message.

Hash index table read/write error. A read/write operation, involving the HIT, failed. Refer to the second error message.

Improper drive number specified. The drivespec is not in the range of 0 through 7.

Improper file name. Filespec syntax incorrect or no filespec given.

Load file format error. Load routine didn't know where to put the file.

Lost data during read/write. Disk I/O loop too slow, or hardware problem.

Memory fault. Load routine detected a bad RAM byte or no RAM.

No record found. An attempt is made to read > one unit past the EOF.

Parity error during read/write. A read/write failed (flawed disk).

Write fault on disk drive. Definitely a hardware problem.

DOS ERRORS
DOS ERRORS
Write protected media. A write attempt to a write protected disk.

Notes

BASIC			High level language interpreter.

		BASIC[ff[V]][,mm][,command]<ENTER>

			ff = number of file buffer areas allocated (015) default 3
			V = user defined random I/O flag
			mm = memory protect address
			command = Any valid SUPERBASIC command

If any of the optional parameters are specified a mandatory space is required after BASIC. A comma is interpreted as a separator for a multiple command.

EXAMPLES:
		BASIC<ENTER>

SUPERBASIC loads with 3 file buffer areas allocated (289 bytes for each file buffer area) and RAM available up to TOPMEM.

		BASIC 4<ENTER>

SUPERBASIC loads with 4 file buffer areas allocated and RAM available up to TOPMEM.

		BASIC 2V,60000,RUN"PROG1/BAS"<ENTER>

SUPERBASIC loads with 2 expanded file buffer areas allocated (545 bytes each), capable of handling user defined record lengths (1 to 256), RAM from 60000 up is not available to SUPERBASIC, and the program PROG1/BAS is loaded by SUPERBASIC and executes starting with the first program line. If you are expecting to use directaccess files with a logical record length other than 256, then you must specify the V parameter.

The MODEL I and MODEL III versions have an enhanced version of BASIC - BBASIC - for program development. BBASIC is SUPERBASIC with BOSS. All the features of BASIC are included in BBASIC.

The MODEL 4 and ESOTERIC versions have a high resolution (Hi-RES) version of BASIC – BASICH - to use with either the Radio Shack and/or Micro-Labs high resolution board. The enhanced features are only available with the additional hardware. All the features of BASIC are included in BASICH.

BASIC *		Recover SUPERBASIC program.

		BASIC *<ENTER>

This command assumes SUPERBASIC was previously loaded into your system, you now have the 'MULTIDOS' prompt, and you want to return to SUPERBASIC with the previous program unchanged with arguments intact. CAUTION: You cannot go from SUPERBASIC to DOS, execute commands such as DIR and then use BASIC * to return. In such cases you should use the CMD"fffff" command from within SUPERBASIC. If you were in BBASIC or BASICH, you must use BBASIC * or BASICH * to recover your program.

MODEL I and MODEL III: If the return to SUPERBASIC is successful, then 'Continue?' appears. Enter 'Y' if you want the program to continue.

MODEL I and MODEL III
BASIC !		Capture a BASIC program from RAM.

		BASIC !<ENTER>

This unique command transfers a non-SUPERBASIC program in RAM to SUPERBASIC, sets file buffer area to zero, and maintains protected memory. This command usually follows a reset with MULTIDOS in drive zero. I recommend that you hold down the <ENTER> key to suppress any AUTO command. NOTE: You should use a MULTIDOS system diskette that does not have an invincible AUTO command.

MODEL I and MODEL III
BASIC #		Recover a LEVEL II or MODEL III BASIC program from RAM.

		BASIC #<ENTER>

MODEL I/III MULTIDOS uses CMD”W” from within SUPERBASIC instead of BASIC2 in DOS to enter LEVEL II/MODEL III BASIC. And, if a BASIC program is in SUPERBASIC, then the SUPERBASIC programs is transferred to LEVEL II/MODEL III BASIC via CMD”W”. Once in LEVEL II/MODEL III BASIC (to run the BASIC program), you key SYSTEM<ENTER> and answer the *? Prompt with /16480<ENTER> to re-boot a MODEL I/III MULTIDOS system diskette in drive zero. I recommend that you hold down the <ENTER> key to suppress any AUTO command. NOTE: You should use a MULTIDOS system diskette that does not have an invincible AUTO command. At the DOS command prompt key BASIC #<ENTER>. Now the LEVEL II/MODEL III BASIC program is in SUPERBASIC.

Overlay location of BASIC commands and statements that are not in [B]BASIC[H]/CMD:

	Command
or
Statement
	Model I and Model III
	MAX-80, Model 4, and ESOTERIC

	; or @
	CREF/BOL
	CREF/BOL

	B
	n/a
	RESOLVE/BOL

	F
	UTIL/BOL
	UTIL/BOL

	G
	EDIT/BOL
	EDIT/BOL

	M
	UTIL/BOL
	UTIL/BOL

	N
	UTIL/BOL
	UTIL/BOL, RENUM/BOL

	O
	RENUM/BOL
	RENUM/BOL

	CMD"C"
	UTIL/BOL
	UTIL/BOL

	CMD"D"
	Debug/DOL
	Debug/DOL

	CMD"O"
	UTILA/BOL
	n/a

	CMD"P"
	PACK/BOL
	PACK/BOL

	CMD"Q"
	UTIL/BOL or UTILA/BOL
	SORT/BOL

	CMD"U"
	UNPACK/BOL
	UNPACK/BOL

	CMD"V"
	UTIL/BOL
	UTIL/BOL

	CMD"W"
	PACK/BOL
	n/a

	CMD"X"
	UTIL/BOL, EDIT/BOL, RENUM/BOL
	UTIL/BOL, EDIT/BOL, RENUM/BOL

	CMD"Y"
	n/a
	UTIL2/BOL

	CMD"fffff"
	UTIL/BOL or UTILA/BOL
	UTIL/BOL

	SORT
	n/a
	SORT/BOL

The following applies to all models unless specifically restricted by highlighting the applicable model(s) in blue. ESOTERIC BASIC is named ESOBASIC; and, ESOBASIC is similar to MODEL 4 SUPERBASIC.

SINGLE KEYSTROKE COMMANDS
		<.>		(Period)			=	list current line
		<,>		(Comma)				=	edit current line
		</>		(Slash)				=	list "Break in" line
		<>		(up arrow)		=	list previous line
		<>		(down arrow)	=	list next line
		<SHIFT>						=	list first program line
		MODEL I and MODEL III
		<SHIFT>						=	list last program line
		MAX-80, MODEL 4, and ESOTERIC
		<SHIFT>						=	list last program line

Single keystroke commands are recognized only in the first position after the command prompt, >, appears. MODEL I and MODEL III: If you have pressed any other key(s), you must press <BREAK> instead of <> to position the cursor to the first position. MAX-80, MODEL 4, and ESOTERIC: You may use <> to position the cursor to the first position.

SINGLE CHARACTER COMMANDS
				 ; = cross-reference (MODEL 1 and MODEL III)
				 @ = cross-reference (MAX-80, MODEL 4, and ESOTERIC – CUSTOM/CMD can make it ;)
				 A = AUTO						 {the MODEL I and MODEL III also have reserved word AUTO}
				 B = resolve laBels
				 C = CONT
				 D = DELETE					 {the MODEL I and MODEL III also have reserved word DELETE}
				 E = EDIT						 {the MODEL I and MODEL III also have reserved word EDIT}
				 F = Find ASCII string
				 G = Global editor
				 I = Insert							{= A[UTO] current line +1, 1}
K"filespec = KILL"filespec"			{see KILL}
				 L = LIST
L"filespec = LOAD"filespec"			{see LOAD}
				 M = Move a single line
				 N = duplicate a line. i.e., make a New line like an existing line
				 O = renumber (re-Order line sequence)
				 P = list Page					{= CLS:LIST current line – current line +x}	
				 R = Run program
R"filespec = RUN"filespec"			{see RUN}
S"filespec = SAVE"filespec"			{see SAVE}

The above commands are terminated with <ENTER> and are not case sensitive. i.e., either g<ENTER> or G<ENTER> invokes the global editor.

@			(MAX-80, MODEL 4, and ESOTERIC) Cross reference arguments and integers.
;			(MODEL 1 and MODEL III)

			@[*|$][<tar>]<ENTER>
			@[*|$][#<reserved word>]<ENTER>

		* =	multiple reference listing to the display.
		$ =	multiple reference listing to the printer.
	tar =	The reference target {not case sensitive @a is the same as @A}:
1) An integer number (between 0 and 9999999) that may be a line number and/or a constant in the program.
2) The @ character.
3) A one or two character variable name without a type suffix.
4) A reserved word if preceded by a # symbol.

Without the multiple reference specifiers, all the line numbers that contain <tar> are displayed. After a reference target has been established, the reference lines are displayed sequentially with each additional press of @<ENTER>.

If the * or $ option is used with an <tar>, then a reference listing is produced starting with the target and proceeding in ascending order. Use of the * or $ option without an <tar> target results in a reference listing of all integer numbers and variables. If the reference listing is requested in the form @*#<ENTER>, a listing of reserved words is produced. The reserved word listing is produced in token value order not alphabetical order.

To pause during a reference listing, press <SHIFT>@. To resume the listing, press any key except <SHIFT>@. To stop the listing, press <BREAK>.

When the line number containing the reference is displayed, it may be followed by one or more of the following modifiers:

				/n where n = the number of references to the target in the line.
				/$n the variable contains the string type declaration tag $.
				/%n the variable contains the integer type declaration tag %.
				/!n the variable contains the single precision type declaration tag !.
				/#n the variable contains the double precision type declaration tag #.
				(n the variable is used as an array variable in this line.

					If n is has a value of one it is not displayed.

EXAMPLES:
		@*<ENTER>
		All integer, @, and variable references are displayed on the screen.

		@K<ENTER>
		All line numbers that contain the variable K are displayed on the screen. The total occurrences of the variable K is printed on a new screen line, after the line numbers, following a >.

			@K
						K		11/3 36/5 133/6 135 136/5 138/2 181/2 202/4 203
								>29			{K occurs 29 times}

@$G<ENTER>
		All arguments starting with G and continuing through ZZ will have their references directed to the video and line printer. The printer output is suppressed if the printer is routed to a file.

		@#PRINT<ENTER>
		All line numbers that contain the reserved word PRINT are displayed on the screen. The total occurrences of the reserved word PRINT is printed on a new screen line, after the line numbers, following a >.

		@$#<ENTER>
		All reserved words will have their references directed to the video and the line printer. The printer output is suppressed if the printer is routed to a file.

A			Automatic line numbering. {MODEL I/III also have reserved word AUTO.}

			A[start][,increment]<ENTER>

					start = starting line number, default 10
					increment = the number between each line, default 10

The A command prints a line numbers waiting for you to provide the BASIC line data terminated with <ENTER>. If no data is provided for a line:
	MODEL I and MODEL III:
	SUPERBASIC does not insert the line into BASIC text area.
	MAX-80, MODEL 4, and ESOTERIC:
	SUPERBASIC leaves the blank line number in the BASIC text area.

After each line is entered, this command adds the increment to the previous line and waits for your input. If you have no additional data to input, press <BREAK> to exit the A command.

MODEL I and MODEL III:
If start is followed by a comma and increment is not specified, then the last increment specified in the previous AUTO command is used. If a line exists for the new line number, then a * appears immediately behind the line number. e.g., 120* To avoid overwriting this line number, press <BREAK>. Keying <ENTER> immediately after the asterisk will erase the line number and generate the next line number.
MAX-80, MODEL 4, and ESOTERIC:
If start is followed by a comma and increment is not specified, then only start line number is generated. If a line exists for the new line number, then a ! appears immediately behind the line number. e.g., 120! To avoid overwriting this line number, press <BREAK>. Keying <ENTER> immediately after the exclamation mark will blank the line and generate the next line number.

The A command changes a program.

MAX-80, MODEL 4, and ESOTERIC
B			RESOLVER Resolve labels {changes program, and CLEARs 50}

			B[*]<ENTER>

B<ENTER> is for error checking. B*<ENTER> resolves the labels.

RESOLVER resolves, changes to line numbers, all labels in the resident BASIC program. In addition, all label definitions are removed. If a reference error is in the resident BASIC program, RESOLVER displays all of the errors it finds and does not resolve any labels. Error types are:

				lllll/nnnnn/U					Line number lllll has line nnnnn undefined.
				lllll/"label"/U				Line number lllll has label "label" undefined.
				lllll/S								Line number lllll contains a syntax error.
				lllll/O								Line number lllll contains a line number > 65535.

EXAMPLE:
			20/"JILL"/U

Line 20 has a reference to the label "JILL" and there is no LABEL"JILL" in the resident BASIC program. The reference may be in the form of: GOTO "JILL", GOSUB "JILL", ...THEN "JILL", ...ELSE "JILL", RESUME "JILL", ON n GOTO "JACK","JILL", IF ERL = "JILL", etc.

C			Continue program execution after STOP {MODEL I/III also have reserved word CONT.}

			C<ENTER>

C resumes program execution if the program was stopped by pressing <BREAK> or the program encountered a STOP or END statement. Program resumption is not valid if the program is changed. Commands and statements that change a program are:

 1. A<ENTER>
 2. B[*]<ENTER>
 3. a successful D[ln1]-[ln2]<ENTER>
 4. E and <ENTER>. To exit Edit and return to command mode without changes press <Q>
 5. G<ENTER>
 6. I[ln0]<ENTER>
 7. a successful Mln1,ln2<ENTER>
 8. a successful Nln1,ln2<ENTER>
 9. O[new][,inc][,start][,end]<ENTER>
10. CMD”C”<ENTER>
11. processed CMD”P”<ENTER>
12. CMD”U”[,C]<ENTER>
13. CMD”X”<ENTER>
14. CHAIN var$ (without the B option)
15. CLEAR {see CLEAR for differences between MODELS I/III and MAX/MODEL4/ESOTERIC}
16. LOAD var$ (without the B option)
17. MERGE var$
18. NEW
19. RUN[var$ (without the B option)]

D			Delete program line(s) {MODEL I/III also have reserved word DELETE.}

				INPUT 							LINES DELETED
				D<ENTER>							the current line
				D ln1 ln2<ENTER>		lines from ln1 to ln2
				D ln2<ENTER>				the first line to ln2
		MAX-80, MODEL 4, and ESOTERIC:
				D ln1 <ENTER>				lines from ln1 to the end of the program
				D <ENTER>						the entire program

If ln1 does not exist, then the first line deleted is the next highest line greater than ln1. MAX-80, MODEL 4, and ESOTERIC: If ln2 does not exist, then the last line deleted is the highest line less than ln2. At least one line must exist between ln1 and ln2; otherwise, an "Improper parameter used." error results. MODEL I and MODEL III: ln2 must exist; otherwise, an "Improper parameter used." error results.

Note: In SUPERBASIC, entering a line number LISTS the line and does not delete the line.

The D command changes a program.

E			Edit a single program line {the MODEL I and MODEL III have reserved word EDIT}

			E[ln]<ENTER>

				ln = program line to modify default the current line

					NOTE: E<ENTER> is the same as E.<ENTER>.

The E command changes a program.

F			FIND Find ASCII characters including ones in remark statements and quoted text

			Ftar<ENTER>

The F command prints the line numbers for all occurrences of tar in the resident BASIC program. If more than one occurrence is in a line, then a / is printed followed by the number of occurrences. Both leading and trailing spaces are significant.

EXAMPLE:
				F:<ENTER>
				10 20/5 50 70 90/3

	The colon, :, character is in line 10 once, line 20 five times, line 50 once, line 70 once, and line 90 three times.

G			Global editing (GEDIT) the resident BASIC program. {changes program}

			G<ENTER>

GEDIT makes mass changes to the resident BASIC program, by performing the following:

	Change all or part of argument.
	Change all or part of constants, data list items, or strings.
	Change CHR$(xxx) into packed strings.
	Append adjacent line numbers into one long line.
	Split one long line into two shorter ones.
	Change reserved words.

GEDIT General changes

				G<ENTER>

The screen clears and the following prompt is displayed:

		 'L T

				T = _'

This is the target entry mode. The rules for the target are discussed after the replacement is defined. After a target is entered, you are prompted to enter Line A, which is the first line to search and has a default value of the first program line. The next prompt is 'Line B', which is the last line to be searched and has a default value of the last line in the program. Line A and Line B limit changes to a specific range of program lines. The next prompt 'R =' is the replacement entry mode for the target specified. To reenter an erroneous target, press <ENTER> for the replacement, and GEDIT returns to the target entry mode. To delete all occurrences of a target, use <SHIFT><@> as the replacement.

		 'L		 T

				T = A
				Line A , Line B
				R = H
				Use it?'

Finally, GEDIT prompts 'Use it?'. This is the last chance to correct an error in the entries. An <N> response puts the GEDIT in the replacement mode, and a <Y> response starts GEDIT to search the program for the target and make the changes. The screen shows the line number being searched under the L and the last line number where a target was found under the T. When GEDIT has made all of the changes, the total changes are displayed. To exit from GEDIT, at this point, press <BREAK>; otherwise, any other key restarts GEDIT.

If the replacement is larger than the target, the program increases in size by that difference for each occurrence. If you run out of memory, an “Insufficient MEMORY in nnnnn” error message is displayed, and all changes are made up to the point (somewhere in line nnnnn) where memory was insufficient.

Rules for target:
In the following examples, T is the target, R is the replacement and ==> means is changed to.

EXAMPLE:	Change all occurrences of the variable B to F

				T = B and R = F

	B==>F, AB==>AF, BA==>FA, BB==>FF, B$==>F$, AB$==>AF$, CA is not changed.

To change only a single character variable, while leaving multicharacter arguments with the same letter unchanged, enclose the target character in single quotes, e.g., 'X'.

EXAMPLE:	Change all occurrences of a single A to G

				T = 'A' and R = G

	A#==>G#, A$==>G$, A$(1)==>G$(1), A!(A)==>G!(G), A%(AA)==>G%(AA) ── note that (AA) was not changed.

To change only the first character of a multicharacter variable, enter the target character followed by a single quote, e.g., X'.

EXAMPLE:	Change all occurrences of the first A to H

				T = A' and R = H

	AA==>HA, AB==>HB, AC==>HC, QD is not changed, AE==>HE, AA$==>HA$, BA$ is not changed.

To change the second or greater character of a multicharacter variable, while leaving the first character unchanged, precede the target character with a single quote, e.g., 'X.

EXAMPLE:	Change all occurrences of the second A to I

				T = 'A and R = I

	AA!==>AI!, BA==>BI, AA$==>AI$, A$(AA)==>A$(AI), A is not changed, AX is not changed.

To change a target that is enclosed in quotation marks, precede the target with the $ sign.

EXAMPLE:	Change all E in strings to Z

				T = $E, and R = Z.

	"ABCDE"==>"ABCDZ", TE is not changed, "EASY"==>"ZASY"

MAX-80, MODEL 4, and ESOTERIC
The <WC> character is used in any target position if you don't care what's in that target position. For the replacement, the <WC> character leaves that position unchanged. e.g., T = <WC>T, and R = <WC>Q means change all arguments ending with T to now end with Q. NOTE: <WC> is not available with BASICH/CMD.

GEDIT Reserved word changes
GEDIT can change reserved words, such as PRINT to LPRINT. You must be careful, however, as lowercase is not acceptable. Under SUPERBASIC as each line is entered and/or edited, it is processed through a buffer. This buffer looks for reserved words and changes them to a one byte code. It also converts all arguments to uppercase. Do not use lowercase for reserved words and/or arguments because GEDIT does not process changes through this buffer. A syntax error will occur at run time. If the target is a reserved word and/or the arithmetic operators +, , *, /, [, >, =, or <, then bracket the target with the < and > characters, e.g., <TAB(>, <>, <PEEK>, </>, <[>, <PRINT>, <=>, <<>, etc.

GEDIT Building compressed strings
Programs containing many CHR$(xxx)+CHR$(xxx) statements, can be shorten by building compressed strings. To build a compressed graphics string in place of a CHR$(xxx) type lines, enter the + character for the target. To build a compressed string with space compression codes, enter the * character for the target. This results in faster execution and more free memory. As an example, the line:

				10 A$=CHR$(191)+CHR$(129)+"X"+CHR$(176)

requires 32 bytes of memory. After GEDIT builds a compressed string, the line would be:

				10 A$="..X."

where the "." represents a graphic character. The new length would be 14 bytes, or more than a 50% saving of space. The CHR$(xxx) cannot contain blanks within the parentheses, i.e., CHR$(191) is not changed.

EXAMPLES:

	(1)	+ 			Changes 210 B$=CHR$(131)+"X"+CHR$(176)
							to			210 B$=".X."												{"."=graphics}

	(2)	*				Changes 337 PRINT CHR$(204)+"TEST"
							to 337 PRINT " TEST"

	(3)	+ Followed by *
							Changes 400 A$=CHR$(178)+CHR$(204)+CHR$(190)
							to 400 A$=". ."

For those who want to change any CHR$(xxx) to a one byte value, key an = after the + or * to adjust the xxx value down by 128. i.e., *= compresses CHR$(064) through CHR$(127). Note the required '0' before the '64'. GEDIT requires three-digit values. And do not compress a CHR$(000) [leave it as CHR$(0) and GEDIT will not change it].

GEDIT Appending line numbers
GEDIT can append a program line to the preceding line in a program, disregarding references to the line. As an example, if a program originally contains lines 1,2,3,4, and 5, and you append line 3 to line 2, an error would result if line 5 contains GOTO 3 and you ran the program that executes line 5. Also do not append to a line which contains an open quote (10 A$="THIS IS). Close the quote first, then append (10 A$="THIS IS").

GEDIT's append can create lines greater than 255 bytes in length, that execute properly, but cannot be completely listed on the screen and/or edited. Use CMD"U" to separate the lines. To append, respond with the / character and the line number to be appended as the target.

EXAMPLE:
				10 A$="TEST #"
				20 PRINT A$

To append the above two lines, the target is /20. The result is one line:

				10 A$="TEST #":PRINT A$

GEDIT Splitting lines
GEDIT can split a program line, containing two or more BASIC instructions, into two lines. The new line number can be any number greater than the line to be split. However, if you assign a new line number greater than line number of the following line, run time errors will occur if the program has a references to the in between line. As an example, if a program contains lines 10, 20, 30, 40, 50, and 60, and you split line 20 into lines 20 and 45, lines 30 and 40 are not found by a reference instruction such as GOTO 30, GOSUB 40, etc. However, if the program flow is such that SUPERBASIC would normally process the next statement after the new lines 20 and 45, lines 30 and 40 will be processed. SUPERBASIC would, in the absence of any branching instructions, process lines 20, 45, 30, 40, and 50 in that order.

The split point must be directly behind a colon (:) in the program line. To split a line, enter the target in the form ttt, where ttt is the target for the split. If the target is a reserved word such as PRINT, enclose the target with < and > signs. If no target is specified, then the line is split at the first occurrence of a colon. Line A now represents the line number to be split and line B represents the new line number.

EXAMPLE:
				10 A$="TEST #":PRINT A$"

	To split the above line, T = , Line A = 10, Line B=15. The result is:

				10 A$="TEST #"
				15 PRINT A$

EXAMPLE:
				30 A$="ABCDE":PRINT A$:B$="FGH":PRINT B$

	To split the above line at :PRINT B$, T = <PRINT> B$, Line A = 30, and Line B = 35. The result is:

				30 A$="ABCDE":PRINT A$: B$="FGH"
				35 PRINT B$

NOTE: Use of 'manual' appends and splits may change program's logic.

I			Automatic line numbering {changes program}

			I<ENTER>
			I[ln0]<ENTER> {MAX-80, MODEL 4, and ESOTERIC}

The I command presets the A command with the current line +1 as the starting line, and the increment to 1. MAX-80, MODEL 4, and ESOTERIC: You can put a line number after the I and this line number supersedes the current line. i.e., I 23 is the same as A 24,1

L			List program line(s) onto display.

				INPUT 							LINES LISTED
				L<ENTER>								the current line
				L ln1 ln2<ENTER>			lines from ln1 to ln2
				L ln2<ENTER>					the first line to ln2
				L ln1 <ENTER>					lines from ln1 to the end of the program
				L <ENTER>							the entire program

If ln1 does not exist, then the first line listed is the next highest line greater than ln1. If ln2 does not exist, then the last line listed is the highest line less than ln2. Note: In SUPERBASIC, entering a line number LISTS the line and does not delete the line.

M			Move a single program line {changes program}

			M ln1,ln2<ENTER>

				ln1 = line number to be moved
				ln2 = location ln1 is moved to

The M command relocates ln1 to ln2, deleting ln1, and inserting it as ln2. If ln2 existed prior to this command it is replaced by ln1. The . (period) may be used for ln1 and/or ln2 to refer to the current line. The references to the moved line are not updated. If you want to move a group of lines and/or update references to a single line, use the renumber command, O.

N			Duplicate program line(s) {changes program}

			N ln1,ln2<ENTER>

				ln1 = line number to be duplicated
				ln2 = location where ln1 is duplicated

The N command duplicates ln1 as ln2 while leaving ln1 intact. If ln2 existed prior to this command, it is replaced by ln1. The . (period) may be used for ln1 and/or ln2 to refer to the current line. References remain with the original line ln1.

MAX-80, MODEL 4, and ESOTERIC
The N command can duplicate a group of lines, provided there is no overlap.

		N ln1-ln2,ln3<ENTER>

This command duplicates lines from ln1 through ln2 starting with ln3 and incrementing by one. i.e., the first line of duplicate text is ln3, the second line is ln3+1, the third line is ln3+2, etc. In this construct, ln3 cannot exist. References are not updated because the original lines remain. 'Sequence overlaps.' is displayed if ln3 exists or if there is insufficient sequence space between ln3 and the next line in the program. The lines are duplicated; however, they are placed at the end of the program. You can renumber the whole program to create the sequence space then renumber again to move the program lines. References are not updated because the original lines remain.
NOTE: This N command uses RENUM/BOL.

O			RENUMBER Renumber the resident BASIC program. {changes program, and CLEARs 73}

			O[nnn][,iii][,sss][,eee]<ENTER>

				nnn =	The first line number to be assigned to a renumbered line. nnn has a default value of 10.
				iii =	The increment to be used in renumbering. iii must be greater than 0, and has a default value of 10.
				sss =	The starting line number in the original program where renumbering is to start. sss has a default value of 0. This is the first line renumbered.
				eee =	The ending line number in the original program where line renumbering is to stop. This is the last line renumbered. eee must be => sss and has a default value of 65529 for the MODEL I and MODEL III. For the MAX-80, MODEL 4, and ESOTERIC the default value is 65534; and, RENUMBER does not renumber line 65535.

RENUMBER checks for missing and/or invalid line numbers in a program, recovers a NEWed program, and renumbers all or part of a program. RENUMBER displays single letters to indicate the status of renumbering: C = checking, R = renumbering, and M = moving. An E indicates error checking only. There is no status indicated when recovering a program immediately after a NEW.

Error types are:
				lllll/nnnnn/U					Line number lllll has line nnnnn Undefined.
				lllll/S								Line number lllll contains a Syntax error.
				lllll/O								Line number lllll contains an Overflow line number.

For error checking only or to recover a program immediately after a NEW, key o<ENTER>.

EXAMPLE:
				20/9/U

Line 20 has a reference to line 9 and there is no line number 9 in the resident BASIC program. The reference may be in the form of: GOTO 9, GOSUB 9, ...THEN 9, ...ELSE 9, RESUME 9, ON n GOTO 8,9, IF ERL = 9, etc.

RENUMBER checks your program for errors before renumbering. If any errors are found they are displayed and the program is unchanged.

EXAMPLE:
				10 PRINT "TEST"
				20 GOTO 290
				30 INPUT A
				40 ON A GOTO 10,20,,60,70
				50 GOTO 10
				60 PRINT A
				70 PRINT A*2
				80 GOTO 70000
				90 END

	Any attempt to renumber this program, produces:

				20/290/U 40/S 80/O

	This tells us line 20 has a reference to line 290 that is Undefined, line 40 has a Syntax error (the double comma between 20 and 60), and line 80 has an Overflow line number (70000). After changing 290 to 90, 70000 to 10 and removing the extra comma, the command o50,1,50,69<ENTER> would generate the following program:

				10 PRINT "TEST"
				20 GOTO 90
				30 INPUT A
				40 ON A GOTO 10,20,51,70
				50 GOTO 10
				51 PRINT A
				70 PRINT A*2
				80 GOTO 10
				90 END

	This program needs a little help to do anything meaningful. Let's renumber this program so that the INPUT statement in line 30 gets processed. This is accomplished by MOVING lines 30 to 70 inclusive to less than 20. Let's key in o11,1,30,70<ENTER>, and the result is:

				10 PRINT "TEST"
				11 INPUT A
				12 ON A GOTO 10,20,14,15
				13 GOTO 10
				14 PRINT A
				15 PRINT A*2
				20 GOTO 90
				80 GOTO 10
				90 END

As long as newly generated line numbers do not overlap the original text lines, the new lines may be placed anywhere in text. When RENUMBER moves text, an 'M' is displayed to indicate a move is taking place. If the amount of the program to move is greater than the available memory, then RENUMBER takes as many moves as necessary to complete the move – indicated by multiple 'M's.

P			List a page of program lines

			P[ln]<ENTER>

The P command lists lines, starting with the line equal to or higher than ln, until two screen lines are available. Subsequent P<ENTER>'s continue to list the balance of the program starting with the last line previously listed until the last line is listed. After the last line is listed, P<ENTER> clears the display and lists the last line.

MODEL I, MODEL III, MAX-80, MODEL 4 and ESOTERIC RESERVED WORDS
MAX-80, MODEL 4, and ESOTERIC BASIC reassigned token values for reserved words that most likely would not be used in a program. e.g., DELETE. And MAX-80, MODEL 4, and ESOTERIC BASIC assigned reserved words to the four unassigned values of 0FCH through 0FFH; otherwise, the token values are the same for the five versions of BASIC.

DEC HEX		WORD				DEC HEX		WORD					DEC HEX		WORD				DEC HEX		WORD

128 80H		END					160 A0H		OUT						192 C0H		VARPTR			224 E0H		EXP
129 81H		FOR					161 A1H		ON						193 C1H		USR					225 E1H		COS
130 82H		RESET				162 A2H		OPEN					194 C2H		ERL					226 E2H		SIN
131 83H		SET					163 A3H		FIELD					195 C3H		ERR					227 E3H		TAN
132 84H		CLS					164 A4H		GET						196 C4H		STRING$			228 E4H		ATN
133 85H		CMD					165 A5H		PUT						197 C5H		INSTR				229 E5H		PEEK
134 86H		RANDOM			166 A6H		CLOSE					198 C6H		POINT				230 E6H		CVI
135 87H		NEXT				167 A7H		LOAD					199 C7H		TIME$				231 E7H		CVS
136 88H		DATA				168 A8H		MERGE					200 C8H		MEM					232 E8H		CVD
137 89H		INPUT				169 A9H		NAME/CHAIN		201 C9H		INKEY$			233 E9H		EOF
138 8AH		DIM					170 AAH		KILL					202 CAH		THEN				234 EAH		LOC
139 8BH		READ				171 ABH		LSET					203 CBH		NOT					235 EBH		LOF
140 8CH		LET/SOUND		172 ACH		RSET					204 CCH		STEP				236 ECH		MKI$
141 8DH		GOTO				173 ADH		SAVE					205 CDH		+						237 EDH		MKS$
142 8EH		RUN					174 AEH		SYSTEM/CALL		206 CEH								238 EEH		MKD$
143 8FH		IF					175 AFH		LPRINT				207 CFH		*						239 EFH		CINT
144 90H		RESTORE			176 B0H		DEF						208 D0H		/						240 F0H		CSNG
145 91H		GOSUB				177 B1H		POKE					209 D1H		[241 F1H		CDBL
146 92H		RETURN			178 B2H		PRINT					210 D2H		AND					242 F2H		FIX
147 93H		REM					179 B3H		CONT/EXIT			211 D3H		OR					243 F3H		LEN
148 94H		STOP				180 B4H		LIST					212 D4H		>						244 F4H		STR$
149 95H		ELSE				181 B5H		LLIST					213 D5H		=						245 F5H		VAL
150 96H		TRON				182 B6H		DELETE/ERASE	214 D6H		<						246 F6H		ASC
151 97H		TROFF				183 B7H		AUTO/ZERO			215 D7H		SGN					247 F7H		CHR$
152 98H		DEFSTR			184 B8H		CLEAR					216 D8H		INT					248 F8H		LEFT$
153 99H		DEFINT			185 B9H		CLOAD/WC, HR	217 D9H		ABS					249 F9H		RIGHT$
154 9AH		DEFSNG			186 BAH		CSAVE/LABEL		218 DAH		FRE					250 FAH		MID$
155 9BH		DEFDBL			187 BBH		NEW						219 DBH		INP					251 FBH		'
156 9CH		LINE				188 BCH		TAB(220 DCH		POS					252 FCH		HEX$
157 9DH		EDIT/SORT		189 BDH		TO						221 DDH		SQR					253 FDH		WPEEK
158 9EH		ERROR				190 BEH		FN						222 DEH		RND					254 FEH		BIN$
159 9FH		RESUME			191 BFH		USING					223 DFH		LOG					255 FFH		ROW

Arguments in a program cannot contain reserved words. Example: DISTANCE, DONE, and BLOCK cannot be used as arguments because they contain TAN, ON, and LOC respectively.

SUPERBASIC

A SUPERBASIC program consists of one or more program lines. The lines may be numbered from 0 to 65529 for the Model I and Model III and 0 to 65535 for the MAX-80, Model 4, and ESOTERIC. Program lines are created with 1 to 240 characters for the Model I and Model III and 0 to 245 characters for the MAX-80, Model 4, and ESOTERIC. The characters in a line make one or more BASIC statements. A statement is one complete instruction. A statement can be one word and/or a group of words. When you are in the command mode, you can use most statements as commands – you cannot complete INPUT statements in the command mode. And, the commands previously described cannot be used as statements in a BASIC program. Some of the following SUPERBASIC instructions may be used as statements; however, their execution terminates the program and clears all variables. Examples of SUPERBASIC instructions are in the sample program found in APPENDIX B. This is indicated with ‘See line 00000 in sample program.’ where 00000 is the line number in the sample program.

The statements that follow are either not covered in the MODEL III/4 BASIC Language Reference Manual (Radio Shack CAT. NO. 262112) and/or are different in SUPERBASIC.

&H, and &X	Hexadecimal and Binary constants.

		&[H]hhhh	hhhh is a hexadecimal number 1 to 4 characters long.
		&X xxxxx	xxxxx is a binary number 1 to 16 characters long.

The ampersand instruction is an integer function that enables you to use hexadecimal (base 16) or binary (base 2) constants in your program. The H is optional in SUPERBASIC.

EXAMPLES:
				X = &4000						assigns the decimal value of 16384 to X.
				Y = &6000 &5200		assigns 3584 (2457620992) to the variable Y
				POKE &FFFD, 4				places 4 in memory location FFFDH.
				Z = &X1111					assigns 15 to the variable Z.

The ampersand functions can be used to assign values to variables; or, can be used as operands for numeric operators, relational operators, or logical operators.

See lines 10500 and 10600 in sample program.

MAX-80, MODEL 4, and ESOTERIC:
The VAL string function can process an ampersand constant in a string.

EXAMPLE:
				X = VAL(“&4000”)		assigns the decimal value of 16384 to X

A useful application using this capability is converting an input statement that asks for a hexadecimal number into a constant that can be processed with other functions.

EXAMPLE: Get value contained in a word.
			1250 INPUT “Location of word (HEX)”;A$
			1300 PRINT WPEEK(VAL(“&” + A$))

MAX-80, MODEL 4, and ESOTERIC
ASC					ASCII to decimal

				ASC(str$)

					str$ = string.

ASC returns the ASCII code of the first character in str$. The string argument must be enclosed in parentheses. If the string argument is null, ASC returns 0.

EXAMPLE:	A$="GEORGE", B$="HARRY", C$="01010", D$="" (null)
				15600 PRINT ASC(A$),ASC(B$),ASC(C$),ASC(D$),ASC("E")
							prints: 71, 72, 48, 0, and 69 respectively.

MAX-80, MODEL 4, and ESOTERIC
BIN$				Integer to binary.

				BIN$(exp)

					exp = expression in the range of 32768 to 32767 or 0 to 65535.

BIN$ converts a numeric expression or constant into a 16 character string. The numeric expression or constant must be enclosed in parentheses.

EXAMPLE:
				10 PRINT BIN$(173)		prints 0000000010101101
				20 PRINT BIN$(74)		prints 1111111110110110
				30 PRINT BIN$(65461)	prints 1111111110110110

MAX-80, MODEL 4, and ESOTERIC
CALL				Execute machine language routine.

				CALL exp

					exp = expression in the range of 32768 to 32767, or 0 to 65535.
	
CALL executes the machine language routine at exp. If the machine language routine executes without moving the Stack Pointer, and terminates with a RET instruction, your SUPERBASIC program continues with the next statement. CALL does not pass and/or receive any arguments to/from the machine language routine. Use the USR function to pass and/or receive one argument.

EXAMPLE:
				1020 CALL &4461:CLS

When this line is encountered, SUPERBASIC calls the machine language routine at 4461H (screen dump for MAX-80 and MODEL 4) then returns to the next statement, CLS.

See line 19200 in sample program.

MAX-80, MODEL 4, and ESOTERIC
CLEAR n			Change the amount of string space. {does not change program}

				CLEAR exp

					exp = expression in the range of 32768 to 32767 or 0 to 65535.

CLEAR exp changes the amount of string space currently allocated for string storage without clearing variable values. However, all FORNEXT loops and GOSUBs are nullified.

EXAMPLE:
				100 CL=0
				120 ON ERROR GOTO "ERROR"
				130 LABEL "CLEAR"
				140 CLEAR CL
				150 INPUT"Your State";ST$
				... more program lines
				780 LABEL"ERROR":IF ERR = 26 THEN CL=CL+5: RESUME "CLEAR"

	This short program keeps asking for the name of your State until it clears enough string space (by adding 5 to the amount of free string space) to handle the number of characters in you state's name.

See line 10200 in sample program.

MAX-80, MODEL 4, and ESOTERIC
CLEAR				Clears variable values, resets USR definitions, collapses FORNEXT loops, resets GOSUB return pointers, and changes program.

CLEAR n:CLEAR is a near equivalent of CLEAR n on the MODEL I and MODEL III.

MAX-80, MODEL 4, and ESOTERIC
CLS n				Paint the screen.

				CLSexp
					exp = an expression between 0 and 255.

CLS exp places the video poke value of exp in all video RAM positions.

EXAMPLE:
				10 CLS 191

This whites out the display, does not disable reverse video, does not reset WIDE display mode, and homes the cursor. CLS without and expression clears the screen, resets reverse video, resets WIDE display mode, and homes the cursor. CLS32 clears the screen, does not disable reverse video, does not reset WIDE display mode, and homes the cursor.

NOTE: The <CLEAR> key does not clear the screen. <CLEAR> clears from the cursor to the end of display.

MAX-80, MODEL 4, and ESOTERIC
CMD"B"				Disable normal responses to the <BREAK> key.

					55 CMD"B":INPUT"Amount";AM#

CMD"B" disables the <BREAK> key until a statement or command that change a program is executed. The <BREAK> key is temporarily enabled during a CMD"fffff" and disabled again when SUPERBASIC is resumed. See the C command (page 106) for statements and commands that change a program.

CMD"C"			Space compression. {changes program}

				CMD"C"<ENTER>

This command eliminates unnecessary spaces and linefeeds from the resident BASIC program, resulting in more available memory and faster execution.

CMD"D"			Load and execute DEBUG.

				CMD"D"

This command loads and executes DEBUG. (See the LIBRARY command DEBUG.)

CMD"E"			Disk I/O error.

				CMD"E"

This command displays the last DOS error that occurred during this invocation of BASIC.

MODEL I and MODEL III
CMD"K"			Zero array.

				CMD"K", vv(0[,0[,0[,...]]])[,vv(0[,0[,0[,...]]])[,...]]

					vv = any valid array variable name.
					 0 = dummy argument (one 0 required for each dimension).

CMD"K" sets all string arrays to null and sets every element of a numeric array to zero. ZERO does not remove the array from RAM. Use CMD"L" to remove an array.

EXAMPLE:
				10 DIM A(3,4), B$(12)
				. . .
				500 CMD"K", A(0,0),B$(0) {all elements (20) of array A are now zero, and all 13 elements of array B$ are now null}

MODEL I and MODEL III
CMD"L"			Remove array from memory

				CMD"L", vv(0[,0[,0[,...]]])[,vv(0[,0[,0[,...]]])[,...]]

					vv = any valid array variable name.
					 0 = dummy argument (one 0 required for each dimension).

EXAMPLE:
				10 DIM A(3,4), B(12)
				. . .
				500 CMD"L", A(0,0),B(0)	{array A and array B$ are removed from memory}
				510 DIM A(5,6),B(7)			{removing an array enables you to re-dimension arrays}

MODEL I and MODEL III
CMD"O"				Multikey numeric and string sort.

				CMD"O", exp,arv1(se)[POS bt][,[>]arv2(se)][POS bt][,...]						{DIRECT}
				CMD"O", exp,*iarv(se),arv1(se)[POS bt][,[>]arv2(se)][POS bt][,...]	{INDIRECT}

See SORT for a complete description of CMD"O".

CMD"O" requires installation of UTILA/BOL. The BASIC program OPT/BAS enables you to switch between UTILA/BOL and UTIL/BOL. If you switch in UTILA/BOL, you will not have the following commands:
													F single letter command						M single letter command
													N single letter command						CMD"C"
													CMD"V"														CMD"X"

You can always switch back UTIL/BOL. Or, have two different option diskettes.

CMD"P"			PACKER Pack program lines. {changes program}

				CMD"P"<ENTER>

When CMD"P" is entered:
			 'Program size = bytes sectors/byte {the program size as stored on disk}
				Maximum line length _'

appears. Enter the maximum length for program lines. A # following the maximum length instructs PACKER to pack program lines without removing spaces. MAX-80, MODEL 4, and ESOTERIC: A * following the maximum length instructs PACKER not to renumber 0, 1, 2, etc. Both # and * may be specified in any order and must follow the line length. Enter any value between 0 and 65535. A 0 packs lines to a maximum of 65536 characters. The default value is 240 for the MODEL I and MODEL III; and, 245 for the MAX-80, MODEL 4, and ESOTERIC. If no errors occur, the program is packed and for the MAX-80, MODEL 4, and ESOTERIC renumbered 0, 1, 2, etc. Lines referenced by other program lines are not packed to a previous line. Lines with a REM or an IF statement are not packed to the following line. A line number followed by a Q indicates a line with an open quote.

CMD"Q"			String sort.

		(1)	CMD"Q",n1,vv$(0)
		(2)	CMD"Q",n1,vv$(0,0),n2

			vv$ =	Any valid string array variable name
			n1 =	An integer or integer variable representing the absolute highest element to be sorted.
			n2 =	A positive integer or integer variable representing the column number to sort in a two dimensional array (relative zero).

This command sorts a string array in accordance with the sign of n1. If n1 is positive, then the sort is in ascending and/or alphabetical order. If n1 is negative, then the sort is in descending and/or reverse alphabetical order. Option (1) is used to sort a single dimension array. The array is sorted up to the n1th element, including the 0th element. Option (2) is used to sort a two dimensional array with n2 indicating which column of the array to use as the sort key.

EXAMPLE:
				20 CLEAR 600: DIM A$(10)
				40 FOR I = 1 TO 10: READ A$(I): NEXT I
				50 DATA "WASHINGTON", "OREGON", "CALIFORNIA", "NEVADA", "IDAHO", "UTAH", "ARIZONA", "MONTANA", "WYOMING", "COLORADO"
				60 CMD"Q",I,A$(0)
				80 FOR I=1 TO 10: PRINT A$(I),: NEXT I

	The printout is:

	ARIZONA CALIFORNIA COLORADO IDAHO MONTANA
	NEVADA OREGON UTAH WASHINGTON WYOMING

	NOTE the following key points.
	 1.	The 0th element was not used (it is a null string).
	 2.	The value of I in line 60 is actually 11. CMD"Q" does not cause an error if the value of n1 is greater than the first dimension of the array.
	 3.	If line 60 were changed to: CMD"Q",I,A$(0) the printout would be:

	WASHINGTON UTAH OREGON NEVADA MONTANA
	IDAHO COLORADO CALIFORNIA ARIZONA

	What happened to WYOMING? A$(0)="WYOMING" and A$(10)="".

	 4.	If line 60 were changed to: CMD"Q",6,A$(0) the printout would be:

	CALIFORNIA IDAHO NEVADA OREGON UTAH
	WASHINGTON ARIZONA MONTANA WYOMING COLORADO

	Only the elements A$(0) through A$(6) were sorted, leaving A$(7) through A$(10) as loaded from the data statement.

There is another sort statement available. See SORT for MAX-80, MODEL 4, and ESOTERIC; and see CMD"O" for MODEL I and MODEL III.

MODEL I
CMD"R"			Enable interrupts

				CMD"R"

This command enables the interrupts.

CMD"S"			Exit SUPERBASIC.

				CMD["S"]<ENTER>

This command exits the present SUPERBASIC invocation. The S is optional.

MODEL I
CMD"T"			Disable interrupts

				CMD"T"

This command disables the interrupts. This command is invoked automatically when CLOAD, CSAVE, and/or SYSTEM in entered in the command mode.

CMD"U"			UNPACKER Unpack program lines. {changes program, and CLEARs 73}

				CMD"U"[,C]<ENTER>

The UNPACKER unpacks a program into as many lines as possible, inserts spaces around each reserved word, and renumbers the program 10, 20, etc. The C option instructs CMD"U" to make as many lines as possible without adding spaces around each reserved word. UNPACKER displays single letters to let you know the progress:
					C = Checking for errors (see renumber, O command, for error types)
					S = Spreading (separating multiple statement lines to individual lines)
					U = Unpacking (adding spaces around reserved words)
					R = Renumbering

CMD"V"			Defined variables.

				CMD"V"<ENTER>

This command displays all assigned scalar variables and string equivalents in the order they were created, and all array arguments with the left most index incrementing to the dimension limit, then the elements to the right incrementing to the dimension limit, etc. The screen clears and up to one page, less two lines are displayed. Press any key to display an additional variable or <ENTER> to display up to one page more.

MODEL I and MODEL III
CMD"W"			Transfer BASIC program to Level II BASIC or Model III BASIC

				CMD"W"<ENTER>

This command transfers the resident BASIC program to ROM BASIC. cf BASIC # on page 102.

CMD"X"			Remove REMark statements. {changes program}

				CMD"X"<ENTER>

This command removes REMark statements from the resident BASIC program. If a line consists of a remark statement only, then the entire line is removed. After the remark statements are removed, error checking is performed by RENUM/BOL to check for undefined lines. CMD"X" requires UTIL/BOL, EDIT/BOL, and RENUM/BOL to be available.

MAX-80, MODEL 4, and ESOTERIC
CMD"Y"			Utility for counting and listing.

	CMD"Y"[,T]<ENTER>			Prints the line lengths in ascending line number order in the format nnnnn/lllll, where nnnnn is the line number and lllll is the length. If T is specified, then the lengths reflect the tokenized length.
	CMD"Y",C<ENTER>				Prints the number of lines in the program.
	CMD"Y",L[G]<ENTER>		LISTs the program, indenting lines wider than the video. If G is specified, then do not convert graphic characters to periods.
	CMD"Y",LP[G]<ENTER>		LLISTs the program, indenting lines wider than the FORMS setting for width. If G is specified, then do not convert graphic characters to periods.
	CMD"Y",Q<ENTER>				Prints the highest 64 line lengths in ascending length order in the format nnnnn/lllll, where nnnnn is the line number and lllll is the length.
	CMD"Y",A<ENTER>				Prints - in the CMD"Y",Q format - line numbers that should not be saved using the ",A" option (ASCII). May not print anything.

CMD"fffff"	Execute a MULTIDOS LIBRARY command or UTILITY from SUPERBASIC.

				CMD var$
		 or	CMD "fffff"

					 var$	= string argument valued with a MULTIDOS LIBRARY command or UTILITY
					fffff = any valid MULTIDOS LIBRARY command or UTILITY.

This command executes any MULTIDOS command that does not change TOPMEM6, including BASIC, from within the SUPERBASIC environment. The command may be used in the direct mode or as a statement within a BASIC program. CMD"fffff" temporarily sets TOPMEM to a value to protect the BASIC program, and requires 6272 free bytes to execute for MODEL I and MODEL III or 6048 free bytes to execute for MAX-80, MODEL 4, and ESOTERIC.

EXAMPLES:
				CMD"DIR"
				The directory contents are displayed.

				CMD"BACKUP":GOTO 230
				BACKUP/CMD is loaded and executed. Upon completion, the BASIC program executes the next instruction GOTO 230.

NOTE 6: The LIBRARY commands DO, RESET, TOPMEM, and ROUTE change the value of TOPMEM. A DO file completes before it returns to BASIC, RESET simply exits BASIC, TOPMEM changes are ignored, and a ROUTE to a filespec is not allowed. You may execute a command such as CMD"ROUTE PR to DO" with no problem.

Any nonMULTIDOS /CMD program that uses memory above 68FFH (60FFH for ESOTERIC), causes a crash upon an attempt to return to SUPERBASIC if just the minimum (6272 or 6048) bytes are free and you do not abort BASIC. You can abort MAX-80’s, MODEL 4’s, and ESOTERIC’s BASIC by inserting instructions similar to the code segment on the last page of Entry points for ESOTERIC into your application.

You can compute the free memory required:

					FREE MEMORY REQUIRED = HIGHEST BYTE USED - 26879 + 6048. {MODEL 4 MULTIDOS}

See line 10600 in sample program.

DEF FN			Define function.

				DEF Fnxxx(uuu[,uuu...]) = www

					xxx = Name of the function (any valid variable name).
					uuu = Arguments to be used to define the function.
					www = An expression or formula involving the arguments uuu.

This statement creates an implicit function. After a function has been defined, the function can be used as any of the other intrinsic functions, e.g., ATN, COS, ASC, etc. The type of value returned is the same as the type of variable used to name the function. In addition, the arguments used in the DEF FN statement are local arguments and do not affect the arguments used elsewhere in the program. A space is optional between DEF and FN, i.e., DEF FN or DEFFN.

EXAMPLE:
				10 DEFFN Q(K,L) = K/10 + L/20
				20 INPUT "Enter quantity of nickels and dimes";N,D
				30 PRINT "The amount in dollars is";FN Q (D,N)

The function Q, FN Q, is defined using K and L, and the arguments in line 20 and 30 are N and D. K and L can be used elsewhere in the program without affecting FN Q. And FN Q, using K and L, has no effect on the arguments K and L used elsewhere in the program.

DEF USR			Define entry address of USR routine.
				DEF USRn = aaaaa

						 n =	The digit 09. If n is omitted 0 is used.
					aaaaa =	The entry address to a machine language routine. aaaaa may be any numerical expression, including constants, arguments, and/or functions.

EXAMPLE:
				10 CLEAR 500: DEFINT AZ
				20 N = 20000
				30 DEF USR 5 = N * 3
				.. more program lines
				780 G=USR5(E)

	Defines 60000 decimal to as the entry point to a USR 5 call. A space is optional between DEF and USR, i.e., DEF USR or DEFUSR.

See line 17500 in sample program.

MAX-80, MODEL 4, and ESOTERIC
ERASE				Remove an array from memory.

				ERASE vv[(][,vv[(] [,...]]

					vv = any valid array variable name.

ERASE removes arrays. The memory used by the array is made available without clearing any other variable. In addition, this enables you to dimension the same array again.

EXAMPLE:
				10 DIM A$(20,2)
				... more program lines
				1020 ERASE A$(
				1030 DIM A$(30,3), B(22), C(88)
				... more program lines
				1020 ERASE B(,C(

The MODEL I and MODEL III functional equivalent to ERASE is CMD"L",

See line 22000 in sample program.

The use of the optional left parenthesis enables CREF to indicate the variable is an array in the ERASE statement.

ERROR				Simulate an error condition.

				ERROR exp

					exp = expression between 1 and 255

ERROR simulates the error in exp. The MODEL I and MODEL III (ROM) cannot simulate errors above 23. The ERR codes, ERROR codes, and definitions are detailed on pages 154 through 159.

MAX-80, MODEL 4, and ESOTERIC
EXIT				Prematurely exit a FORNEXT loop.

				EXIT eeeee

					eeeee = a line number from 0 to 65535 or a "label"

EXIT enables you to exit a FORNEXT loops before the loop has completed the specified number of cycles. EXIT transfers the program control to the line number and/or label and cancels the current loop and all immediate outer FORNEXT loops. The value of the loop counters when EXIT is encountered is available for use.

EXAMPLE:
				10 FOR I = 1 TO 999: IF INKEY$<>"" EXIT "KEY"
				20 NEXT I
				30 PRINT "Sorry, timed out."
				40 GOTO "SLEEP"
				50 LABEL "KEY"

	This example provides a means to time a response. If the response takes longer than the allocated time (approximately 3 seconds), then the program branches to the line with LABEL"SLEEP". However, if you press a key, then the program branches to the line with LABEL"KEY" and the time of the response is in the variable I.

See lines 20100 and 40200 in sample program.

MAX-80, MODEL 4, and ESOTERIC
HEX$				Integer to hexadecimal.

				HEX$(exp)

					exp = expression in the range of 32768 to 32767 or 0 to 65535.

HEX$ converts a numeric expression or constant into a four character hexadecimal string. The numeric expression must be enclosed in parentheses.

EXAMPLE:
				10 PRINT HEX$(173)		prints "00AD"
				20 PRINT HEX$(74)		prints "FFB6"
				30 PRINT HEX$(65461)	prints "FFB6"

INPUT				Assign data to variable(s).

		(1) INPUT["prompt";]var1[,var2][,...
				MAX-80, MODEL 4, and ESOTERIC
		(2) INPUT!col,row,[%rvar,]|[#]len,char,[USING str$],["prompt";]var1[,var2][,...
		(3) INPUT@pos,[%rvar,]|[#]len,char,[USING str$],["prompt";]var1[,var2][,...

	 "prompt"; =	An optional prompt message.
var1, var2, etc. =	numeric and/or string arguments.
				 col =	the video column (X coordinate) horizontal axis. (0 to 79 in 80X24 video mode, or 0 to 63 in 64X16 video mode)
				 row =	the video row (Y coordinate) vertical axis. (0 to 23 in 80X24 video mode, or 0 to 15 in 64X16 video mode)
							 % =	precedes rvar to hold the terminator value
					 rvar =	the numeric variable to receive the terminator value. Use of %rvar is exclusive with the automatic <ENTER> flag [#] because it also specifies automatic <ENTER> when the input field is full. Any value between 1 and 31 (except 8 and 24) is considered a terminator. However, in position one; a left arrow <> exits with rvar equal to 8. An <ENTER> before the field is full returns 13 into rvar. A full input field returns 0 in rvar.
							 # =	specifies automatic <ENTER> when the input field is full.
				 len =	the length of the input field(s) (1 to 255).
				 char =	video poke value to delineate the input field (1 to 255).
			 USING str$=	str$ = string expression representing the mask characters. USING str$ means only accept characters in str$.
						 pos =	video display position. (0 to 1919 in 80X24 video mode, or 0 to 1023 in 64X16 video mode)

Option 1 displays a space and question mark before the input field and prints a carriage return and places the cursor on the next line when <ENTER> is pressed. Options 2 and 3 do not print a space and question mark and do not print a carriage return when <ENTER> is pressed. If you want the cursor on the next line, you will have to issue a PRINT statement.

EXAMPLE:
				10 CLEAR 5000:CLS
				20 A$="1234"
				... more program lines
				300 PRINT"Please select one category"
				310 PRINT"(1) List the file."
				320 PRINT"(2) Save the file."
				330 PRINT"(3) Display directory."
				340 PRINT"(4) Return to DOS."
				350 INPUT @ 720, 1, 95, USING A$, "Selection ";S%
				... program continues

	The only characters the INPUT statement accepts in line 350 are 1, 2, 3, or 4: the characters in A$ (line 20).

Options 2 and 3 enable you to have an INPUT prompt on the last line of the video display without scrolling the display when you enter the data.

See lines 12300 and 18000 in sample program.

INSTR				String search.

				INSTR([p,]string,substring)

									p = An optional search starting position in string (default 1).
						 string = The name of the string to be searched.
					substring = (1) The name of the substring you are searching for,
									 or (2) The actual substring you are searching for.

This function searches through string to see if it contains substring. If it contains substring, INSTR returns the starting position of substring in string; otherwise, zero is returned. If substring is a null string, INSTR returns zero.

EXAMPLES	(let Z$="SUPERBASIC", W$="" {null}, X$="SUPER")

				Expression														Result
				INSTR (Z$, "PER")											 3
				INSTR (2, Z$, W$)											 0	{W$ is null}
				INSTR (3, Z$, "U")										 0
				INSTR (2, Z$, X$)											 0
				INSTR (4, Z$, "BASIC")									6
				INSTR (3, "ABCDABCDABCDABCD", "ABC")		5

MAX-80, MODEL 4, and ESOTERIC
LABEL				Identifier for a symbolic expression for a line.

			LABEL"label"

					label = a string (1 to 255 characters)

LABEL enables you to construct a SUPERBASIC program with labels to identify key points in your program without having to remember the line number of the routine. For example, you have developed a routine to calculate the difference between two dates, and have placed this routine somewhere near the end of the program. While you are still developing the front end, as you add lines you must continually renumber the program to fit the new lines in the appropriate positions in the program text. After each renumber, you must find the line number of this routine and refer to it correctly. However, if you labeled the routine "DIFFDAYS", you can renumber as many times as you wish and simply refer to "DIFFDAYS" to perform the required calculation.

EXAMPLE:
				10 CLEAR5000:CLS
				20 INPUT!0,0,6,95,USING"0123456789","The promise date in YYMMDD ";PD!
				30 INPUT!0,1,6,95,USING"0123456789","The critical date in YYMMDD ";CD!
				40 GOSUB"DIFFDAYS":IF DD!>0 THEN PRINT!0,2,"The promise supports the program": GOTO"NEXT" ELSE PRINT!0,2,"You must improve the promise date":GOTO"EXPEDITE"
				... more program lines
				1030 LABEL"DIFFDAYS" '(PD! CD!) in days, is returned in DD!
				... date calculator routine
				2090 RETURN

See lines 11800, 12600, 15400, 16400, … in sample program.

LINE INPUT	Input a string from keyboard.

		(1) LINE INPUT["prompt";]var$
				MAX-80, MODEL 4, and ESOTERIC
		(2) LINE INPUT!col,row,[%rvar,]|[#]len,char,[USING str$],["prompt";]var$
		(3) LINE INPUT@pos,[%rvar,]|[#]len,char,[USING str$],["prompt";]var$

				Note: The vertical bar, |, denotes exclusive options. i.e., you may use the option before the vertical or the option after the vertical bar but not both in the same statement.

	 "prompt"; =	An optional prompt message.
				 var$ =	a string variable.
				 col =	the video column (X coordinate) horizontal axis. (0 to 79 in 80X24 video mode, or 0 to 63 in 64X16 video mode)
				 row =	the video row (Y coordinate) vertical axis. (0 to 23 in 80X24 video mode, or 0 to 15 in 64X16 video mode)
							 % =	precedes rvar to hold the terminator value
					 rvar =	the numeric variable to receive the terminator value. Use of %rvar is exclusive with the automatic <ENTER> flag [#] because it also specifies automatic <ENTER> when the input field is full. Any value between 1 and 31 (except 8 and 24) is considered a terminator. However, in position one; a left arrow <> exits with rvar equal to 8. An <ENTER> before the field is full returns 13 into rvar. A full input field returns 0 in rvar.
							 # =	specifies automatic <ENTER> when the input field is full.
				 len =	the length of the input field (1 to 255).
				 char =	video poke value to delineate the input field (1 to 255).
			 USING str$=	str$ = string expression representing the mask characters. USING str$ means only accept characters in str$.
						 pos =	video display position. (0 to 1919 in 80X24 video mode, or 0 to 1023 in 64X16 video mode)

Option 1 issues a linefeed and carriage return and places the cursor on the next line when <ENTER> is pressed. Options 2 and 3 do not issue a linefeed and carriage return when <ENTER> is pressed. If you want the cursor on the next line, you will have to issue a PRINT statement. The input field begins immediately after the optional prompt; therefore, for most programs your prompt would have a trailing space. e.g., "Amount ";

Options 2 and 3 enable you to have a LINE INPUT prompt on the last line of the video display without scrolling the display when you enter the data.

This statement is the method to input a complete line from the keyboard, including leading spaces, punctuation, and linefeeds. This statement sets the variable to null, and does not print a question mark. A space is optional between LINE and INPUT, i.e., LINE INPUT or LINEINPUT.

See lines 15800, 16600, 18500, 26100, and 26500 in sample program.

MID$=				Replace portion of a string.

				MID$(vv$,p[,c])=rr$

					vv$ =	The variable string to be changed.
					 p =	The starting position within the string for the replacement.
					 c =	An optional parameter indicating the number of characters to be replaced.
					rr$ =	The replacement string.

This statement changes part of a string. The length of the target string, vv$, is not changed by the MID$ = statement. Excess characters to the right of rr$ are ignored if rr$ is longer than vv$.

EXAMPLES: (let C$="12345678", D$="BASIC")

				Expression 					Resultant C$
				MID$(C$,3,4)="ABCDE"					12ABCD78
				MID$(C$,1,2)=D$								BA345678
				MID$(C$,8)="YZ"								1234567Y

See lines 19100 and 19300 in sample program.

MAX-80, MODEL 4, and ESOTERIC
NEW				Resets program pointers.

				NEW

NEW resets all program pointers and CLEARs 50. You can un-NEW with o<ENTER>.

MAX-80, MODEL 4, and ESOTERIC
ON STOP GOTO	Trap a <BREAK> press during program execution.

				ON STOP GOTO eeeee

					eeeee = a line number from 0 to 65535 or a "label"

ON STOP GOTO transfers to the specified line or label if the <BREAK> key is pressed during program execution. After an ON STOP GOTO eeeee is encountered in the program, the <BREAK> key is disabled during input: the <BREAK> key is not recognized in a LINE INPUT and/or an INPUT statement. During program execution a transfer to eeeee occurs if the <BREAK> key is pressed.

To enable <BREAK>, set eeeee to zero. i.e., ON STOP GOTO 0. This should be performed in a common exit routine to ensure the <BREAK> key is available in the command mode.

See lines 12200, 17600, 19400, 21300, and 40400 in sample program.

PRINT				Display data.

		(1) PRINToutv
		(2) PRINT@pos,outv
MAX-80, MODEL 4, and ESOTERIC
		(3) PRINT!col,row,outv

				outv =	expression with optional USING, TAB(, or TAB(# modifiers.
				@pos =	video display position. (0 to 1919 in 80X24, or 0 to 1023 in 64X16)
				 col =	the video column (X coordinate) horizontal axis. (0 to 79 in 80X24 video mode, or 0 to 63 in 64X16 video mode)
				 row =	the video row (Y coordinate) vertical axis. (0 to 23 in 80X24 video mode, or 0 to 15 in 64X16 video mode)

See lines 14700, 15100, 15700, 16500, 24700, 25100, and 25400 in sample program.

MAX-80, MODEL 4, and ESOTERIC
RANDOM				Seed random number generator.

				RANDOM[RESET]

RANDOM enables you to have a different sequence of pseudorandom numbers. RANDOM RESET enables you to have the same sequence of pseudorandom numbers.

MAX-80, MODEL 4, and ESOTERIC
RESTORE				Reset DATA pointer.

				RESTORE[eeeee]

					eeeee = a line number from 0 to 65535 or a "label"

RESTORE resets the DATA pointer to the beginning of the BASIC program, or to the line or label represented by eeeee.

MAX-80, MODEL 4, and ESOTERIC
RND					Produce pseudorandom numbers.

				RND(exp)

					exp = expression in the range of 16777215 and 16777215

 RND uses the integer part of exp and:
		returns a pseudorandom number between 1 and INT(exp) if INT(exp) is greater than 1.
		returns 1 if INT(exp) = 1.
		returns a pseudorandom number between 0 and less than 1 if INT(exp) = 0.
		returns 1 if INT(exp) = 1.
		returns a pseudorandom number between INT(exp) and -1 if INT(exp) is less than 1.

MAX-80, MODEL 4, and ESOTERIC (MODEL I and MODEL III exact equivalent is CMD"O")
SORT				Multikey numeric and string sort.

				SORT exp,arv1(se)[POS bt][,[>]arv2(se)][POS bt][,...]			{DIRECT}
				SORT exp,*iarv(se),arv1(se)[POS bt][,[>]arv2(se)][POS bt][,...]	{INDIRECT}

					 exp =	absolute number of elements in each of the arrays participating in the sort (0 to 32767).
		arv1, etc. = the arrays to participate in the sort.
					 se =	starting element of the corresponding array.
					 bt =	starting point for string array (bt = 0 to 255).
					iarv =	an integer array used as a pointer for indirect sorts.

Both exp and arv1 are required for either sort. In addition, iarv is required for the indirect sort.

The SORT statement is used to sort integer, single, or double precision numeric arrays, and string arrays. If exp is positive, then the sorted arrays is in ascending alphabetical order for string arrays or most negative to most positive for numeric arrays. Each array can have a plus (+) or minus () sign preceding the array name to determine the order in which that particular array controls the sort. However, if exp is evaluated to be negative, then the signs preceding the arrays are ignored, and the sort is in reverse alphabetical order (descending) for string arrays or most positive to most negative for numeric arrays.

Direct Sort
The DIRECT sort statement swaps all of the corresponding elements in each array in the sort statement.

Although all corresponding elements in the sort statement are swapped, you can specify how many arrays are to be considered in determining the sort by placing a > character in front of an array. The > character directs the sort statement not to consider arrays that follow.

EXAMPLE:
				SORT E, J(1), K(1), L(1), >M(1), N(1)

If E is evaluated positive, then the elements in array J are sorted in ascending order. If two elements, being compared, in array J are equal, then the corresponding two elements are compared in array K to determine the sort order. If the corresponding two elements in array K are equal, then the corresponding two elements in array L are compared. If the corresponding two elements in array L do not match, then the sort order is descending for all of these corresponding elements when array L is used to determine the sort. If the corresponding two elements in array L are equal, arrays M and N are not considered in determining the sort; therefore, the corresponding elements are not swapped. Although arrays M and N do not determine the sort order, the corresponding elements in arrays M and N are swapped along with the corresponding elements in arrays J, K, and L.

If E is evaluated negative, then all of the arrays are sorted in descending order.

The use of the sign in evaluating the E expression enables you to programmatically control the sort order without having two sort statements.

		770 'The variable K holds the number of elements to be sorted
		780 INPUT!0,ROW(0),#1,95,USING"ADad","<A>scending or <D>escending ";Z$
		790 PRINT
		800 IF Z$ = "a" OR Z$ = "A" THEN E = K ELSE E = K

You can place a negative sign in front of the E expression instead of each array to make the sort order descending.

		SORT 22, A$(1), B#(1), A%(1), B!(1)

This statement sorts elements 1 through 22 of arrays A$, B#, A%, and B! in descending order. This is the same as:

		SORT 22, A$(1), B#(1), A%(1), B!(1)

Optional Plus Sign
Although the sort defaults to ascending order, a plus sign is optional to signal ascending order.

		SORT (J/2+K), +A(1),B(1),+C(1)

This statement sorts array A in ascending order. If two elements, being compared, in array A are equal, then the corresponding two elements in array B are used to determine the sort order. If the corresponding two elements in array B are not equal, then the sort is descending for these two elements. This is the same as:

		SORT (J/2+K), A(1),B(1),C(1)

When a string array is used in a SORT statement, you can specify the starting point for comparison in each string array.

		SORT V, A$(0) POS J, B$(0), C!(0),D$(0) POS K, E#(0)

This statement sorts array A$ using the Jth character as the first character in determining the sort. If the length of a string in array A$ is less than J, then the elements are not swapped during the sort. Only the elements whose string's length is J or more characters long participate in the sort.

Indirect Sort
The indirect sort only swaps the elements in array iarv. The other arrays in the sort statement are not changed. The indirect sort enables you to sort pointers for the other arrays. The following example demonstrates the result of an indirect sort.

EXAMPLE:
				 GIVEN___________

				B(1) = 20			C(1) = 9
				B(2) = 18			C(2) = 10
				B(3) = 20			C(3) = 10
				B(4) = 15			C(4) = 16
				B(5) = 7			C(5) = 17
				B(6) = 2			C(6) = 8

	The initial values in array A% are not relevant for the indirect sort statement. Any prior values for the elements in A% are ignored and changed.

				SORT 6, *A%(1), B(1), C(1)

	The contents of the B and C arrays are not changed. However the contents of array A% is as follows:

				A%(1) = 6
				A%(2) = 5
				A%(3) = 4
				A%(4) = 2
				A%(5) = 1
				A%(6) = 3

	A sorted list of arrays B and C can be obtained by using array A% as an index to the B and C arrays, i.e.,

				240 FOR I = 1 TO 6
				250 PRINT B(A%(I)), C(A%(I))
				260 NEXT I

The indexing array (A% in the preceding example) must be an integer array. However, the other arrays in the indirect sort statement can be integer, single precision, double precision, or string.

				SORT SQR(M!), *D%(1), G#(1), B$(1) POS 2, H%(1), > J#(2)

The global descending control for indirect sorts can be either for the elements to participate in the sort or the index array.

				SORT 12, *N%(1), H$(1)
				SORT 12, *N%(1), H$(1)

These two sort statements are equivalent in determining the sort order.

See line 20600 in sample program.

MODEL 4, and ESOTERIC
SOUND				Generate sounds.

				SOUND texp,dexp

					texp = tone, expression in the range of 0 to 31.
					dexp = duration, expression in the range of 0 to 255.

Texp is modulo 32. If texp evaluates to 56, then 24 is used for the tone. The lowest tone is zero. The lowest duration is zero and the longest duration is 255 which is about 11 seconds for a CPU speed of 4.05504 MHz. SOUND can't be stopped with <BREAK>.

MAX-80, MODEL 4, and ESOTERIC
TAB(#				Indirect TAB.

				TAB(#exp)

					exp = expression in the range of 0 to 255.

TAB(#exp) uses the current cursor position as the reference point. Whereas a TAB(exp) statement uses the starting left margin as the reference point.

TROFF				Disable TRON.

See TRON that follows.

MAX-80, MODEL 4, and ESOTERIC
TRON				Enable trace.

There are nine trace commands to provide debugging aids in developing programs. TROFF and all eight TRON commands can be used as statements.

TRON or TRON 0 = Trace program flow in upper right corner of display.
				TRON 1 = Trace program flow to printer.
				TRON 2 =	Print each BASIC statement in lower left corner of display prior to execution.
				TRON 3 = Single step each BASIC statement or program line with delay.
				TRON 4 = Full line single step.
				TRON 5 = Single statement step.
				TRON 6 = Disable single step and BASIC statement printing.
				TRON 7 = Print erroneous statement when an error occurs.

When a BASIC program is executing, and any TRON command is enabled, the following control keys can be used to invoke other TRON/TROFF commands:
		<CTRLP> = TRON 0		<CTRLQ> = TRON 1		<CTRLX> or <SHIFT> = TROFF
		<CTRLR> = TRON 2		<CTRLS> = TRON 3		<CTRLY> or <SHIFT> = TROFF except TRON 7
		<CTRLT> = TRON 4		<CTRLU> = TRON 5		<SHIFT> = slower TRON 3
		<CTRLV> = TRON 6		<CTRLW> = TRON 7		<SHIFT> = faster TRON 3

TRON	Trace on: to VIDEO. Invoked by <CTRLP> if any TRON is active.
		TRON enables printing each line number, prior to execution, in a controlled trace area the first four video lines in the upper right corner. The first line number entered, after TRON, prints on the first video line in the upper right corner of the display prefixed by the # sign. As each new line is entered the new line number prints below the previous line number until four video lines are used. When the fifth line number is entered, the new line number overprints the first line number. When the sixth line number is entered the sixth line number overprints the second line number. This process continues, displaying the last four line numbers entered with the # sign prefixing the last entered line number.

TRON 1	Trace on: to PRINTER. Invoked by <CTRLQ> if any TRON is active.
		TRON 1 enables printing each line number, prior to execution, onto the printer. The printout is similar to:

					LPRINT USING "######";LINE;

		where LINE is the line number. This format, using six print positions per line number, enables you to control the printout by adjusting the FORMS width prior to using TRON 1.

TRON 2	Trace on VIDEO with print of BASIC statements. Invoked by <CTRLR> if any TRON is active.
		TRON 2 prints each BASIC statement in the lower left corner using the last two video lines. The first statement in a program line is displayed without a preceding colon. A multiple statement line has the second and/or greater statement printed prefixed by a colon. A BASIC statement larger than two video lines scrolls the display.

TRON 3	Trace on VIDEO with delay. Invoked by <CTRLS> if any TRON is active.
		TRON 3 delays the BASIC interpreter prior to each BASIC statement if TRON 5 is active; otherwise, TRON 3 delays prior to the execution of each BASIC line, displaying the line number in the upper right corner prior to the line being executed. You can switch between delays at the beginning of each line to delays at the beginning of each statement by pressing <CTRLU> to delay at the beginning of each statement or <CTRLT> to delay at the beginning of each line. The amount of delay is controlled by <SHIFT> and <SHIFT> while the program is executing. <SHIFT> doubles the delay until the delay is approximately one second. And <SHIFT> halves the delay until the delay is approximately three milliseconds. Both estimates are based on a CPU speed of 4.05504 MHz.

TRON 4	Trace on with full line pauses. Invoked by <CTRLT> if any TRON is active.
		TRON 4 pauses execution of the BASIC program at the beginning of each line entered until any key is pressed except <SHIFT@>.

TRON 5	Trace on with statement pauses. Invoked by <CTRLU> if any TRON is active.
		TRON 5 pauses execution of the BASIC program at the beginning of each statement until any key is pressed except <SHIFT@>.

TRON 6	Single step trace off. Invoked by <CTRLV> if any TRON is active.
		TRON 6 disables TRON 2, TRON 3, TRON 4, and TRON 5. TRON 6 executes a TROFF if TRON 2, TRON 3, TRON 4, or TRON 5 are the only trace commands active when TRON 6 is executed.

TRON 7	Print erroneous statement. Invoked by <CTRLW> if any TRON is active.
		TRON 7 prints the erroneous BASIC statement when an error occurs. This command assists you in finding the error in a multiple statement line.

TRON 8 through TRON 65535 does not error because the TRON n invoked is the remainder of the 8 through 65535 divided by 8 (modulo 8).

TRON[0] and TRON 1 are mutually exclusive. TRON 4 and TRON 5 are obviously mutually exclusive. You can have TRON[0] or TRON 1, TRON 2, TRON 3, TRON 4 or TRON 5, and TRON 7 active at the same time.

STRING COLLECTION
String collection for the MAX-80, MODEL 4, and ESOTERIC has been enhanced to significantly reduce the time it takes to collect active strings. To achieve this fast collection, two bytes of free memory are required for each active string in a temporary work area. When the string collection is complete, this temporary work area is returned to free memory.

Timing in seconds for a CPU speed of 4.05504 MHz (Yes, MODEL III at 4.05504 MHZ):
		Strings		Fast Time		 Slow Time		MODEL III Time
			 100			0.13					0.57					0.95
			 500			0.53				 11.10				 19.9
			1000			1.11				 43.20				 77.8
			2000			2.38				170.55				307.6

The previous method used to reduce string collection was obtained by clearing as much string space as possible. Now you should leave, if possible, at least two bytes free for each active string. Execution of a LOAD "filespec", RUN "filespec", and/or NEW command CLEARs 50 in addition to performing the LOAD, RUN, or NEW.

When any of the trace functions are active, BASIC prints a $ in the upper right of the screen during the string collection routine. If there is insufficient RAM available for the fast collection, a G is printed and the slow process of string collection is invoked.

USR					Execute a machine code routine.

				var = USR [n](exp)

					var = variable to receive the value returned from the USR call.
					 n = the digits 0 9. If n is omitted 0 is used.
					exp = any expression, any precision.

This function transfers control to a machine language subroutine that has been previously defined by the DEFUSR statement and returns to next statement following the USR call. MAX-80, MODEL 4, and ESOTERIC: All previous definitions are reset by a CLEAR statement.

Upon entry to the USR routine, the HL register pair is valued with the start of the USR routine and information about exp is in ACUM0 and/or ACUM1 with the type in (40AFH).

	
	
	ACUM0
	
	
	
	ACUM1
	
	
	

	
	MULTIDOS = (40AF)
	ESOTERIC = (12F9)
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	MULTIDOS: xx = 41
	
	
	
	

	
	
	
	
	ESOTERIC: xx = 13
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	xx1D
	xx1E
	xx1F
	xx20
	xx21
	xx22
	xx23
	xx24

	
	
	
	
	
	
	
	
	
	
	

	DP
	8
	LSB
	nSB
	nSB
	nSB
	nSB
	nSB
	MSB
	Exp

	SP
	4
	
	
	
	
	LSB
	nSB
	MSB
	Exp

	INT
	2
	
	
	
	
	LSB
	MSB
	
	

	String
	3
	
	
	
	
	LSB
	MSB
	
	

	
	
	
	
	
	
	
	
VARPTR,
points to
	
	

	
	
	
	
	
	
	
	

	
	
	

	
	
	
	
	
	
	
	Length
	Location of string
	

	
	
	
	
	
	
	
	of string
	
	

	
	
	
	
	
	
	
	n
	LSA
	MSA
	

	
	
	
	
	
	
	
	
	
	
	

To pass exp to the HL register pair, execute a CALL MKINT as the first instruction in the USR routine. exp can be any precision and must be between -32768 and 32767.

If exp is a string: For the MODEL I and MODEL III, its VARPTR is in the DE register pair. For the MAX-80, MODEL 4, and ESOTERIC, its VARPTR can be placed into the HL register pair by executing CALL MKSTR as the first instruction.

The value placed in var upon return from the USR call is the value of exp; however, if exp is not an integer and MKINT is called, then var is INT(exp). If you want to pass the contents of the HL register pair to var, JP STINT as the last instruction.

	
	MODEL I
MODEL III
	MAX-80
MODEL 4
	ESOTERIC

	MKINT
	0A7F
	0909
	1B09

	MKSTR
	29DA
	092D
	1B2D

	STINT
	0A9A
	0942
	1B42

See line 17700 in sample program.

MAX-80, MODEL 4, and ESOTERIC
WPEEK				Examine the contents of a 16 bit word in RAM.

				WPEEK(addr)

					addr = RAM address in the range of 32768 to 32767 or 0 to 65535.

WPEEK returns a value between 32768 and 32767. WPEEK is more efficient than PEEK when you want to find a word value stored in RAM.

	WPEEK(address) is equivalent to PEEK(address)+256*PEEK(address+1).

In addition, if the sum of the PEEKs is greater than 32767, you do not have to convert for an integer expression.

EXAMPLE: You have stored a machine language routine in B$, and do not need to pass values to the routine, nor do you want to retrieve any values from the routine. This is accomplished in one statement: CALL WPEEK(VARPTR(B$) + 1)

See lines 17500 and 19200 in sample program.

MAX-80, MODEL 4, and ESOTERIC
ZERO				Zero array.

[bookmark: OLE_LINK7][bookmark: OLE_LINK8]				ZERO vv[(][,vv[(] [,...]]

					vv = any valid array variable name.

ZERO sets all string arrays to null and sets every element of a numeric array to zero. ZERO does not remove the array from RAM. Use ERASE to remove an array.

See line 33200 in sample program.

The use of the optional left parenthesis enables CREF to indicate the variable is an array in the ZERO statement.

BOSS SUPERBASIC (MODEL I and MODEL III)
BOSS SUPERBASIC is an enhanced version of MODEL I and MODEL III SUPERBASIC named BBASIC/CMD. BBASIC/CMD is started similar to BASIC/CMD for the MODEL I and MODEL III. BBASIC/CMD has all of the features of BASIC/CMD with the addition of single step, trace, argument review, and program pushing commands. Upon entering BBASIC, the <@> key becomes a control key, and '@' is printed by pressing <SHIFT·SPACE>.

The additional commands available with BBASIC are invoked by pressing down the <@> key first then, without removing your appendage from this key, press one of the keys on the top row of the keyboard. Seven of these commands can be obtained through program execution by poking an appropriate number into 16667 (411BH). This is ROM's trace byte. With the incorporation of these new trace commands, the TRON and TROFF commands are disabled.

The additional commands are described with <@> preceding a character.

	<@·1>	Trace off
				This will turn off all trace commands.

	<@·2>	Trace on: to VIDEO
				<@·2> enables printing each line number entered in a controlled trace area: the first four video lines in the upper right corner. The first line entered, after <@·2>, prints the line number on the first video line in the upper right corner of the display prefixed by the # sign. As each new line is entered the new line number prints below the previous line number until four video lines are used. When the fifth line is entered, the new line number overprints the first line number. When the sixth line is entered the sixth line number overprints the second line number. This process continues, displaying the last four line numbers entered with the # sign prefixing the last entered line.

	<@·3>	Trace on: to PRINTER
				<@·3> enables printing each line number, prior to execution, onto the printer. The printout is similar to:

							LPRINT USING "######";LINE;

				where LINE is the line number. This format, using six print positions per line number, enables you to control the printout by adjusting the FORMS width prior to using TRON 1.

SINGLE STEPPING
You can single step individual lines of a BASIC program or individual statements within a line. In addition, you can vary the delay in which your program steps between lines or individual statements.

	<@·4>	Single Step off
				<@·4> turns off the single step command and enables the program to run as normal. If the trace command was in use, it will continue to command until turned off via the <@·1> command.

	<@·5>	Single Step to the end of a Line
				<@·5> pauses execution of the BASIC program at the end of each line entered until any key is pressed. The trace to video mode is initiated to show the line numbers being executed. The tracing command can be disabled by the <@·1> command, while the single step mode continues.

	<@·6>	Single Step Statement
				<@·6> pauses execution of the BASIC program at the end of each statement until any key I pressed. The trace to video mode is initiated to show the line numbers being executed. This command can be useful but be wary of using it if a program contains lines such as:

						90 FOR X = 1 TO 100:A(X) = 6++3*X*Z:NEXT X

				To single step statement through this line through this line would require 201 presses of a key. Instead use Single Step to the end of a Line, <@·5>, for this type of line. Reference: BREAK POINTS.

	<@·7>	Single Step with Timed Wait
				<@·7> executes one program line or statement, pauses for a predetermined amount of time, then continues. The trace to video mode is initiated to show the line numbers being executed. <@·5> and <@·6> become sub-commands after the <@·7> command is initiated. Pressing <@·6> after <@·7> is initiated causes the delay to occur at a statement separator, in addition to the beginning of a line. Pressing <@·5> causes the delay to occur at the beginning of a line. To speed up execution (decrease delay [about halves]) press <@·>. To slow down execution (increase delay [about doubles]) press <@·>. The delay has nine settings: approximately 3 milliseconds, 7 milliseconds, 14 milliseconds, 29 milliseconds, 60 milliseconds, 120 milliseconds, 241 milliseconds, 482 milliseconds, and 964 milliseconds at normal CPU speed. When BBASIC is initializes, the setting is approximately 241 milliseconds.

BREAK POINTS
The trace and single step commands previously described can be invoked while a program is running by inserting as many POKE statements into the program where the command is desired. The following codes are used:

Command														POKE 16667				Key equivalent
Trace off															1									<@·1>
Trace on: to VIDEO										2									<@·2>
Trace on: to PRINTER									3									<@·3>
Single Step off												4									<@·4>
Single Step to the end of a Line			5									<@·5>
Single Step Statement									6									<@·6>
Single Step with Timed Wait						7									<@·7>

BACKGROUND ARGUMENT PRINTING is primarily a debugging tool that enables you to print variable values or complex calculations without messing up the display. And all of the MINIDOS commands are available. You can use this ability to save the screen to perform a MINIDOS command and return to the previous display contents intact.

BBASIC (MODEL I and MODEL III)
SUPERBASIC and ESOBASIC (MAX-80, MODEL 4, and ESOTERIC)

You can save contents of the video display, suspend program execution, and select or review argument values. When argument reviewing is complete, the display is restored and execution resumed. If insufficient memory is available to save the contents of the video display, a graphic block (143d) appears in the upper right of the video, and selecting and/or reviewing argument is inhibited.

SELECTING ARGUMENTS

		@N = select arguments - N for New arguments (MODEL I and MODEL III BBASIC)
		CTRLN = select arguments - N for New arguments (MAX-80, MODEL 4, and ESOTERIC)

Pressing CTRLN selects the arguments to print during program execution. This command can be entered at any time, before the program runs or during program execution. After invoking CTRLN, the screen clears and the query 'Maximum length ' is displayed. Respond with the following choices:
		Response		Result___
		<BREAK>			exit and return to BASIC program (previous arguments intact)
		1						1 character argument
		2 or 3			maximum of 3 character argument
		4 7				maximum of 7 character argument (default)
		8 15			maximum of 15 character argument
		16 31			maximum of 31 character argument
		32 63			maximum of 63 character argument
		64 99			maximum of 127 character argument
		<ENTER>			defaults to maximum of 7 character argument

The maximum number of arguments for review is limited by the length selected:
		Maximum argument length		Maximum number of arguments
					1																128
					3																 64
					7																 32
				 15																 16
				 31																	8
				 63																	4
				127																	2
				255																	1

Please note that the length includes all characters and reserved words are tokenized into one byte: A$(21,5) is eight characters, F(R(3,8)) is nine characters, and LOG(A/(B+C)) is ten characters in length (LOG is one). After successfully entering a length, the message 'Arguments' is displayed and all previously entered arguments are erased. CTRLN accepts anything that can be printed and fits in the argument length.

Once all of the arguments to review are entered, press <BREAK> to continue with the review. If the maximum number of arguments allowed is entered, CTRLO as described next is automatically invoked.

REVIEWING ARGUMENTS

		@O = reviewing arguments - O for Old arguments (MODEL I and MODEL III BBASIC)
		CTRLO = reviewing arguments - O for Old arguments (MAX-80, MODEL 4, and ESOTERIC)

Pressing <CTRLO> during program execution saves the contents of the video display and the message:

		'<C>hange <D>elete <I>nsert <T>op'

appears along with the first argument and its value. Arguments are displayed in the sequence entered with CTRLN. If insufficient memory is available to save the contents of the video display, a graphic block (143d) appears in the upper right of the video, and the program continues.

· Pressing <BREAK> resumes program execution and returns the original video display.
· Pressing <C> erases the last argument displayed, and puts you in an input mode. The new argument and its value are displayed immediately after entered. Remember, the argument is limited in length per the original choice when CTRLN was selected.
· Pressing <D> deletes the last displayed argument.
· Pressing <I> inserts an argument prior to the last displayed argument.
· Pressing <T> clears the display and presents you with the first sequenced argument.
· Pressing any key other than <BREAK>, <C>, <D>, <I>, and/or <T> advances the display to the next argument in sequence.

If an attempt to print an invalid argument, the message 'Redo' is displayed and the <C> command invoked. A valid argument is required to exit from this command. If an element of an array (subscript < 11) is reviewed and the array has not yet been dimensioned by the program, then this array is dimensioned for eleven elements (010). If the program subsequently attempts to dimension this array via a DIM instruction, an error occurs. Therefore, I recommend you dimension all used arrays before review.

CMD"I"			Insert arguments for background printing.

				CMD"I",len;arg;arg;…;arg

				len = maximum length of argument
				arg = argument or variable – each preceded by a semicolon

CMD"I" is a program statement that sequences arguments similar to pressing CTRLN and entering arguments. The maximum number of arguments depends on the length specified; and, if the maximum number of arguments is exceeded, a syntax error results.

MAX-80, MODEL 4, and ESOTERIC
CMD"N" is a program statement with no arguments or parameters that effects a CTRLN. CMD"N" should not be used in the command mode, use CTRLN in command mode.

CMD"O" is a program statement with no arguments or parameters that effects a CTRLO. CMD"O" should not be used in the command mode, use CTRLO in command mode.

STACKING BASIC PROGRAMS (MODEL I and MODEL III)

BASIC programs can be stacked (saved) into high memory while working or running another program. Of course, this ability is limited by the amount of free memory space available. There are five commands for this function.

	<@·->	=	Save the resident BASIC program into high memory
	<@·:>	=	Recall the last saved program from high memory
	<@·0>	=	Recall the next to last saved program from high memory
	<@·9>	=	Append the next to last saved program from high memory to the resident BASIC program
	<@·8>	=	Append the last saved program from high memory to the resident BASIC program

Each of these commands invokes a CLEAR 50 and halts program execution.

Pressing <@·-> saves the resident program into high memory and adjusts memory size to the beginning of the saved program, thus protecting it from BASIC. The original program is intact if memory permits. Subsequent saves can be made as desired because memory size is adjusted. When a program is saved, execution halts and a tall vertical bar (graphic 170d) appears in the upper right corner (relative position 62) of the video display. This is to the right of the line number trace region, indicating a program has been saved into high memory and program is in BASIC program space for your execution or modification. If insufficient memory is available to save a program and maintain it in BASIC's program space, the program is saved and NEW invoked. This condition is indicated by a small block (graphic 130d) in the upper right of the video display.

Pressing <@·:> recalls the last saved program from high memory, overlaying the resident program and adjusting memory size appropriately. If there is no saved program when <@·:> is executed, the error message "Nothing to recall." is displayed.

Pressing <@·0> recalls the next to the last saved program from high memory, overlaying the resident program and adjusting memory size appropriately. <@·0> provides a means to switch the resident program with the last saved program by saving the present program with <@·:>; and, then recall the next to the last saved program with <@·:>. If only one program is saved when <@·0> is executed, the error message "Only one program saved." is displayed.

Pressing <@·9> recalls the next to the last saved program and appends it to the resident program.

Pressing <@·8> recalls the last saved program and appends it to the resident program.

Line number sequence is mandatory for proper execution of the appending commands. The recalled program should have its lowest line number greater that the highest line number if the resident program. The <@·9> and <@·8> commands append, they do not merge.

SUPERBASIC FILE MANIPULATION
MAX-80, MODEL 4, and ESOTERIC
CHAIN				Load and execute a program keeping variable values.

				CHAIN var$[,B]
		or	CHAIN "filespec"[,B]

This command chains programs that are too large to fit into memory. This command loads and executes the file var$ or filespec beginning with the lowest line number as if it were a new BASIC program. Previous variables and their definition remain intact, except for DEFFN arguments. The B option loads and runs the program without closing any file buffer areas. NOTE: SORT/BOL must be on a system disk, mounted in logical drive 0.

KILL				Delete a file from a disk.

				KILL var$
		or	KILL "filespec"

					var$ = a string defined as a filespec.
				 filespec = a file specification for an existing file.

This command deletes a file from the directory. If the statement is within the program, then the file should be closed first. If KILL is executed in the command mode, KILL closes all file buffer areas before it attempts to remove the target filespec.

LOAD				Load a BASIC program from disk into RAM.

				LOAD var$[,B]
		or	LOAD "filespec"[,B]

					var$ = a string defined as a filespec.
				 filespec = a valid BASIC program file name.

This command loads a BASIC program from disk. The B option loads the program without closing any file buffer areas. MAX-80, MODEL 4, and ESOTERIC: LOAD performs a CLEAR 50.

MERGE				Combine two programs in RAM. {changes program}

				MERGE var$
		or	MERGE "filespec"

						var$ = a string defined as a filespec
			 filespec = a BASIC program saved using the ASCII option

This command combines the program currently in RAM with the program lines in var$, and closes all file buffer areas. If a line number in var$ coincides with a line number in the resident program, then the resident line is overwritten. MERGE leaves you in the command mode.

MODEL I and MODEL III
NAME				Load and execute a program keeping most variable values.

				NAME var$[,B]
		or	NAME "filespec"[,B]

This command chains programs that are too large to fit into memory. This command loads and executes the file var$ or filespec beginning with the lowest line number as if it were a new BASIC program. Previous variables and their definition remain intact, except for DEFFN, strings created via READ, and string assignments directly in program text. The B option loads and runs the program without closing any file buffer areas.

RUN					Load a BASIC program and execute.

				RUN var$[,B]
		or	RUN "filespec"[,B]

This command loads a BASIC program from disk and immediately executes the program at the lowest program line. The B option loads and runs the program without closing any file buffer areas. MAX-80, MODEL 4, and ESOTERIC: RUN "filespec" performs a CLEAR 50.

SAVE				Save a BASIC program to disk.

				SAVE var$[,A]
 or	SAVE "filespec"[,A]

					A = save the file in ASCII format

This command transfers the RAM resident BASIC program to disk overwriting filespec if it already exists. If the A option is not specified, the file is saved in compressed format. Compressed format uses less disk space; and, LOADs and SAVEs are faster. The ASCII format, when list from within DOS, is easier to read; and, is used to transfer a BASIC program to another BASIC interpreter that uses different 'tokens' for reserved words.

EXAMPLE:
				SAVE "FKEY/BAS:2",A

	This command saves the file FKEY/BAS, in ASCII format, to logical drive number 2.

NOTE: When you see "filespec" within quotes. The drive number, if part of the filespec, is also enclosed in the quotes. e.g., "PROGMAX/BAS:2". The ':2' is within the double quotes.

SUPERBASIC FILE ACCESS
OPEN				Set the mode and assign a file buffer area to a filespec.

		(1)	OPEN mode, buf, var$
		(2) OPEN mode, buf, var$, udrl

					mode is a string and/or constant, and is one of the following:
						mode		access mode
						 D			RANDOM I/O (directaccess) to an existing file.
						 E			[EXTEND] SEQUENTIAL OUTPUT to a file.
						 I			SEQUENTIAL INPUT from an existing file.
						 O			[OVERWRITE] SEQUENTIAL OUTPUT to a file.
						 R			RANDOM I/O (directaccess) to a file.

					buf =	the file buffer area, in the range of 1 to ff, to be assigned to var$. ff is the number of file buffer areas made available during SUPERBASIC initialization.
					var$ =	a string defined as a filespec. e.g., "BUFFER/TXT:2"
					udrl =	user defined record length. If not specified, 256 is used.

EXAMPLES: let N = 2, Q$ = "IOTA", and P$ = "CHECKING/TXT".
				OPEN Q$,N,P$

	Opens the file CHECKING/TXT for sequential input in file buffer area 2.

				OPEN"O",3,"BALANCE/TXT"

	Opens the file BALANCE/TXT, and assigns file buffer area 3 to the file.

RANDOM I/O (directaccess): If mode = D, udrl is optional because udrl is obtained from the filespec. If mode is R, udrl updates the logical record length of the filespec when the file buffer area is closed. Therefore, you can use R to change the logical record length of a file. If you want to use user defined record lengths, then you must specify V when you initiate BASIC. NOTE: CUSTOM/CMD enables you to modify [B]BASIC[H]/CMD to always initiate with the expanded buffer areas.

EXAMPLES:
				OPEN "D", 4, "TAXES/DAT", 124

	This statement expects the file TAXES/DAT to exist and opens the file using the user defined record length when the file was created. The ',124' is ignored and does not cause an error.

				OPEN "R", 4, "MENU/DAT", 174

	This statement opens the file MENU/DAT if it exists on a mounted disk, or creates the file MENU/DAT if it does not exist. The user defined record length of 174 is used. All access to the file uses 174 as the udrl. If the file MENU/DAT was previously created with a user defined record length other than 174, then the previous udrl is replaced with 174 when the file is closed.

CLOSE				Closes file buffer areas by buffer number.

				CLOSE [#][buf[,buf...]]

					buf =	an expression with a value of 1 to 15. If buf is omitted, all open file buffer areas are closed.

EXAMPLE:
				CLOSE # 3			Close file buffer area 3.
				CLOSE 8,2,4		Close file buffer areas 2, 4, and 8.
				CLOSE T				Close file buffer area equal to the value of T.

In addition to CLOSE, KILL"filespec" in the command mode and the 19 commands and statements that change a program (see the C command) close all file buffer areas.

INPUT#			OPEN"I" read data command.

				INPUT #buf,var[,var...]

					buf = file buffer area 1 to 15.
					var = a variable name to contain the data from the file.

This statement inputs data sequentially from a disk file starting at the beginning of the file. And to INPUT# data successfully, you need to know how the data was placed on the disk. If the data is going to a string variable, BASIC ignores leading spaces, and begins the INPUT# with the first nonspace character. A comma not enclosed in quotes and/or a carriage return (decimal 13) terminates the input assignment. If nonquoted text is encountered, followed by quoted text, then the quoted text also becomes part of the string variable assignment. If the data is going to a numeric variable, a comma, trailing space, and/or carriage return in the file terminates the variable assignment. The end of file terminates variable assignment also.

EXAMPLE:
				INPUT#2, J, K

Sequentially inputs two numeric items from disk and places them into J and K.

LINE INPUT#	OPEN"I" read a line of text command.

				LINE INPUT #buf,var$

				 buf = file buffer area 1 to 15.
				var$ = the variable name to contain the string.

LINE INPUT# inputs all characters from the current position up to a carriage return (decimal 13), the end of file, and/or 255 characters, whichever comes first. LINE INPUT# differs from INPUT# in that only a carriage return is the terminator. A space is optional between LINE and INPUT#, i.e., LINE INPUT# or LINEINPUT#.

PRINT#			OPEN"O" and OPEN"E" write statement.

				PRINT #buf[USINGformat$;]item[m item...]

					 buf = a file buffer area 1 to 15.
					format = a sequence of field specifiers used with USING.
					 m = a delimiter placed between items.
					 item = an expression to be evaluated and written to the disk.

The delimiter, m, can be a semicolon or comma. The use of these delimiters determines the format on the disk. If the comma is used, the items are zoned in 16 byte areas on the disk, just as a PRINT statement zones the data on the display. If the data is string data with punctuation, then the delimiter should be ;CHR$(34);.

EXAMPLE: let X$ = "JONES, TOM", and Y$ = "SMITH, PAUL"
				PRINT#2, CHR$(34);X$;CHR$(34);Y$;CHR$(34)

FIELD				OPEN"D" and OPEN"R" file buffer area organizer.

				FIELD [#]buf,len1 AS str1$[,len2 AS str2$...]
 or	FIELD [#]buf,len1 TO str1$[,len2 TO str2$...]

					buf =	a file buffer area 1 to 15.
		 len1 =	the length of the first field.
		 str$1 =	the variable name of the first field.
		 len2 =	the length of the second field.
		 str$2 =	the variable name of the second field.
					... =	subsequent len TO str$ (len AS str$) pairs for the balance of the buffer area size. The size is determined by the user for created files, or by the file's directory entry for existing files.

NOTE: More than one set of arguments can point to the same file buffer area.

EXAMPLE:
			The data is stored in the following format. The first 64 bytes contain the client's name and address. The next 14 bytes contain the phone number.

			FIELD 1, 56 TO AD$
			FIELD 1, 78 TO AP$, 122 TO HG$

	These statements assigns the first 56 bytes to AD$, the first 78 bytes to AP$, and 122 bytes to HG$. Printing AD$ would print the client's name but not the phone number. However, printing AP$ would print the phone number as well as the address.

MKI$, MKS$, and MKD$	Data converters: numbers to string.

				MKI$ (num)	num is an INTEGER number only.
				MKS$ (num)	num is a SINGLE PRECISION or INTEGER number.
				MKD$ (num)	num is a DOUBLE, SINGLE PRECISION, or INTEGER number.

Numeric data must be converted to strings because all of the data items for a random (directaccess) file are defined as strings. The length of the string is determined by the precision of the convert function. MKI$ creates a 2 byte string, MKS$ creates a 4 byte string, and MKD$ creates an 8 byte string.

EXAMPLE:
				RSET PAY$ = MKI$(K%)

	This statement converts K% to a two byte string, then RSETs this string into the variable PAY$.

				LSET TAX$ = MKD$(K%*10)

	This statement converts K%*10 into an eight byte string, then LSETs this string into the variable TAX$.

Typically these functions are used after an OPEN, FIELD, and before a PUT statement. See example on next page.

CVI, CVS, and CVD		Data converters: string to numbers.

When reading a random (directaccess) file, certain string data must be converted back to numeric data because all of the data items for RANDOM I/O are defined as strings. Data conversion is handled using one of the following functions:

				CVI (str$)		str$ must be at least 2 bytes long
				CVS (str$)		str$ must be at least 4 bytes long
				CVD (str$)		str$ must be at least 8 bytes long

EXAMPLE:
				TH%=CVI(WF$): K!=CVS(FR$)3

	The string arguments WF$ and FR$ were assigned to a file buffer area via the FIELD statement.

Typically these functions are used after an OPEN, FIELD, and GET statement.

EXAMPLE:
				100 OPEN"D",1,"TEST/DAT"
				110 FIELD 1, 2 TO JK$, 8 TO KL$, 30 TO LM$
				120 GET 1, 1
				130 BYTES! = CVD(KL$)
				140 AGE% = CVI(JK$)
				150 NAME$ = LM$
				160 ...

LSET, RSET	Place data in a RANDOM file buffer area.

				LSET str$ = exp$	RSET str$ = exp$

					str$ = a string variable usually assigned to a file buffer area via FIELD
					exp$ = the assignment for str$

EXAMPLE:
				LSET WF$ = MKI$(J%)
				RSET DR$ = B$ + C$

LSET left justifies the data and RSET right justifies the data. LSET and RSET do not increase the length of str$. If exp$ is longer than str$, then the characters to the right are truncated.

LSET and/or RSET assigns exp$ to str$ even if str$ is not a FIELD variable.

EXAMPLE:
				10 A$ = "TESTING"
				20 LSET A$ = "MULTIDOS"

	After this program is run, the listing is:

				10 A$ = "MULTIDO"
				20 LSET A$ = "MULTIDOS"

Remember, the length of str$ is not increased. If str$ is not defined (length = 0) when an LSET and/or RSET statement is encountered, then the LSET and/or RSET statement simply uses space.

Typically these functions are used after an OPEN, FIELD, and before a PUT statement.

EXAMPLE:
				100 OPEN"R",1,"TEST/DAT",40
				110 FIELD 1, 2 TO FD$, 8 TO MD$, 30 TO XR$
				120 INPUT "What is your age";AG
				130 INPUT "What is your name";NM$
				140 PRINT "OK ";NM$;", How many bytes can a Z80 address";
				150 INPUT BT!
				160 PRINT "I will keep a record of this data"
				170 F$=MKI$(AG)
				180 LSET FD$ = F$
				190 LSET MD$ = MKD$(BT!)
				200 LSET XR$ = NM$
				210 PUT 1,1

PUT					RANDOM write statement.

				PUT [#]buf[,rec]

				buf =	a file buffer area 1 to 15.
				rec =	the record number MAX-80, MODEL 4, and ESOTERIC: 1 to 65535
							or MODEL I and MODEL III: 1 to 32767 and -32768 to -1.
 							If rec is omitted, then the current record is used. The current record is one unit greater than the last record written.

The PUT statement moves data from the file buffer area to a specified record in a file. Each PUT statement writes to a file if the record length is 256 bytes. However, if record length other than 256 is used, (only possible using the V option at BASIC initialization), then BASIC waits until the buffer is full before a write is executed.

			OPEN"R",1,"POKER/TXT",67.

If PUT statements were to write records 1, 2, 3, and 4 in this sequence, then it would take 4 PUT statements before a write is made to the file. The PUT statement requires the following actions to occur before a write:

 1.	OPEN a file, using modes "R", or "D", assigning a buffer area for I/O.
 2.	FIELD the buffer, assigning str$ to specific positions in the buffer.
 3. 	LSET or RSET the data into the buffer area. The converting of numeric data to string data (MKI$, MKS$, or MKD$) can take place prior to the LSET or RSET statements and/or the conversion can take place during the LSET and RSET statements.
 4.	PUT the data into the record via PUT buf[,rec].

If the record number in the PUT statement is greater than the number of records in the file, then the PUT statement increases the file by the necessary length to accommodate the record.

EXAMPLE:
				100 OPEN"R",1,"TEST/DAT",40
				110 FIELD 1, 2 TO FD$, 8 TO MD$, 30 TO XR$
				120 INPUT "What is your age";AG
				130 INPUT "What is your name";NM$
				140 PRINT "OK ";NM$;", How many bytes can a Z80 address";
				150 INPUT BT!
				160 PRINT "I will keep a record of this data"
				170 F$=MKI$(AG)
				180 LSET FD$ = F$
				190 LSET MD$ = MKD$(BT!)
				200 LSET XR$ = NM$
				210 PUT 1,1

GET					RANDOM read statement.

				GET [#]buf[,rec]

				buf =	a file buffer area 1 to 15.
				rec =	the record number MAX-80, MODEL 4, and ESOTERIC: 1 to 65535
							or MODEL I and MODEL III: 1 to 32767 and -32768 to -1.
							If rec is omitted, then the current record is used. The current record is one unit greater than the last record read.

The GET statement reads data from the file to the file buffer area, reading sectors as necessary if the logical record length is less than 256. The GET statement requires the following to occur before a read:

	1. OPEN the file (OPEN"R",buf,filespec[,udrl] or OPEN"D",buf,filespec)
	2. FIELD the buffer area (FIELD buf, 8 TO X$, 23 TO Y$, ...)
	3. GET the record
	4. CVI, CVS, CVD as necessary.

EXAMPLE:
				100 OPEN"D",1,"TEST/DAT"
				110 FIELD 1, 2 TO JK$, 8 TO KL$, 30 TO LM$
				120 GET 1, 1
				130 BYTES! = CVD(KL$)
				140 AGE% = CVI(JK$)
				150 NAME$ = LM$
				160 ...

EOF					End of file detector.

				EOF (buf)

This function returns a zero (false) if the end of file has not been read. Otherwise a 1 (true) is returned. EOF(n) is true if LOC(n) = LOF(n).

LOC					File location indicator.

				LOC (buf)

This function returns the current record read for OPEN"D" and OPEN"R". For OPEN"I", LOC returns the sector read (physical records).

LOF					Last record indicator.

				LOF (buf)

This function returns the highest logical record for OPEN"D" and OPEN"R". For OPEN"I", LOF returns the highest physical record (sector).

ERR/ERROR CODES and ERROR MESSAGES

 ERR				ERROR			 MESSAGE _
 0					 1				NEXT without FOR.
 2					 2				Syntax error.
 4					 3				RETURN without GOSUB.
 6					 4				Out of DATA.
 8					 5				Improper parameter used.
 10					 6				Overflow.
 12					 7				Insufficient MEMORY.
 14					 8				Line number nonexistent.
 16					 9				Subscript undefined.
 18					10				Redimensioned array.
 20					11				Division by zero.
 22					12				Misuse of "INPUT". (MODEL I and MODEL III)
 22					12				Undefined USR function. (MAX-80, MODEL 4, and ESOTERIC)
 24					13				Assignment mismatch.
 26					14				Insufficient string space.
 28					15				String is longer than 255 bytes.
 30					16				String operation too complex.
 32					17				Cannot continue.
 34					18				No RESUME.
 36					19				RESUME without error.
 38					20				Undefined error.
 40					21				Missing operand.
 42					22				Bad file data. (MODEL I and MODEL III)
 42					22				EXIT without FOR. (MAX-80, MODEL 4, and ESOTERIC)
 44					23				User abort.
 46					24				Incorrect dimension cardinality. (MAX-80, MODEL 4, and ESOTERIC)
 4898			2550			Undefined error.
100					51				Field organization exceeded the LRL.
102					52				Disk I/O error, use CMD"E" for specific.
104					53				The buffer number is not available.
106					54				File is not in specified directory.
108					55				Incorrect file mode.
110					56				File buffer previously assigned.
112					57				Disk read error, use CMD"E" for specific.
114					58				Disk write error, use CMD"E" for specific.
116					59				Incorrect password used to access file.
118					60				EOF encountered.
120					61				Drive not available.
122					62				Disk space full.
124					63				EOF reached before any characters read.
126					64				Attempted to access record ZERO.
128					65				Improper file name.
130					66				Access mode differs from OPEN mode.
132					67				I/O buffer overflow.
134					68				Directory space full.
136					69				Write protected media.
138					70				Access attempted to protected file.
140					71				Full directory. The file cannot be extended.
142					72				The buffer has not been assigned.
144					73				Undefined function.
146					74				File not found.
148					75				Sequence overlaps.
150 up			76 up			Undefined error.

MODEL I and MODEL III ERROR values above 23 cannot be simulated with ERROR code.

ERROR MESSAGE DEFINITIONS

Access attempted to protected file.
	ACCESS password given, but UPDATE password required.

Access mode differs from open mode.
	The usage of "PRINT#" with a buffer opened by mode "D", "I", and/or "R".
	The usage of "INPUT#" with a buffer opened by mode "D", "E", "O", and/or "R".
	An attempt to PUT or GET to a file opened by mode "E", "I", and/or "O".

Assignment mismatch.
	An attempt to assign a string expression to a nonstring variable.
	An attempt to use a string variable as a numeric variable.
	An attempt to assign a numeric expression to a string variable.
	An attempt to use a numeric variable as a string variable.

Attempted to access record ZERO.
	The record number via PUT and/or GET is evaluated as being zero.

Bad file data.
	The tape data does not match the variable (Assignment mismatch) or is unreadable.

Cannot continue.
	An attempt to continue program execution after a CLEAR is invoked directly and/or indirectly.

Directory space full.
	All DIREC slots are used. See ZAP/CMD for DIREC detail.

Division by zero.
	In division, the denominator and/or the divisor is evaluated as zero.

Disk I/O error, use CMD"E" for specific.
	Use CMD"E", then refer to the DOS error message definitions.

Disk read error, use CMD"E" for specific.
	Use CMD"E", then refer to the DOS error message definitions.

Disk write error, use CMD"E" for specific.
	Use CMD"E", then refer to the DOS error message definitions.

Disk space full.
	The file being saved or updated requires more disk space than available.

Drive not available.
	The DCT entry is NULL, and/or a disk is not rotating in the specified drive.

EOF encountered.
	An attempt to CHAIN, LOAD, and/or RUN an empty file.
	A GET to a user defined record length file which extends beyond the file size (the file size is not an exact multiple of the logical record length).

EOF reached before any characters read.
	An attempt to input beyond the end of a sequential file.

EXIT without FOR.
	EXIT is used without any FORNEXT loops active. (CLEARn nullifies all FORNEXT loops.)

Field organization exceeds the logical record length.
	The sum of the "len"'s for the "len TO str$" ("len AS str$") pairs in a FIELD statement is greater than the logical record length of the file.

File buffer previously assigned.
	The file buffer number is already assigned to another file. The file you are trying to open may or may not be the same filespec.

File is not in specified directory.
	Filespec not found on disk in logical drive specified. This error is only displayed when the drive number is part of the filespec and the file is not on the specified logical disk.

File not found.
	Filespec is not on any mounted disk.

Full directory. File cannot be extended.
	A file is being expanded and requires an extended directory entry; however, there are no more DIREC slots available.

I/O buffer overflow.
	More than 255 characters encountered since the last terminator while loading a program stored in ASCII format. Or a line number is not after the last terminator. Terminators for ASCII files are 00H and 0DH.

Improper file name.
	A null filespec.
	The filespec exceeded 24 characters (filename/ext.password:d' = 24).
	Filespec syntax incorrect. e.g., LOAD"(/':)"

Improper parameter used.
	An attempt to use an out of range argument.
	An attempt to dimension (DIM) and/or access an array with a negative subscript.

Incorrect dimension cardinality.
	An attempt to access an array with a dimension that is different from then number of dimensions the array was dimensioned. i.e., 10 DIM A(3,4) … 120 A(1,3,5) = BB

Incorrect file mode.
	An attempt to open a file without using "D", "E", "I", "O" and/or "R".
	An attempt to open a random file with the logical record length not equal to 256, and the "V" option was not specified when SUPERBASIC initialized to allocate the additional 256 bytes for the file buffer area.
	An attempt to FIELD a file buffer area and the file was opened via "E", "I", and/or "O".
	An attempt to MERGE a file saved in compressed format (not saved via "filespec",A).

Incorrect password used to access file.
	A file is password protected and the incorrect password given.

Insufficient MEMORY.
	Insufficient MEMORY available to execute the statement or command.
	An attempt to DIM an array that requires more memory than available.

Insufficient string space.
	The operation requires more string space than the amount allocated.
	(MAX-80, MODEL 4, and ESOTERIC: you can issue a CLEARn then continue the program.)

Line number nonexistent.
	A statement contains a reference to a line and/or "label" that is not in the program text.

Missing operand.
	An operator was encountered without a necessary operand following.

Misuse of "INPUT".
	An INPUT statement was keyed in the command mode.

NEXT without FOR.
	A NEXT statement without a corresponding FOR statement. (CLEARn nullifies all FORNEXT loops.)

No RESUME.
	The program naturally terminated with errortrapping active.

Out of DATA.
	A READ attempt without sufficient DATA items.

Overflow.
	An attempt to assign a value greater than 32767 or less than 32768 to an integer variable.
	An attempt to evaluate an expression, even interim results, to an absolute value that is greater than 1.70141E38 in single-precision and/or an absolute value that is greater than 1.701411834604692D38 in double-precision.
	An attempt to renumber a program where a new number would exceed the maximum line number allowed.

Redimensioned Array.
	An attempt to dimension an array previously dimensioned by a previous DIM statement or by default (11).

RESUME without error.
	A RESUME was encountered without a current ON ERROR GOTO active.

RETURN without GOSUB.
	A RETURN was encountered without a GOSUB active.

Sequence Overlaps.
	An attempt to renumber a program where the new sequence would create a line number equal to an existing line number that is not being re-sequenced; or, create a line number higher than a line number that is not being re-sequenced.

String is longer than 255 bytes.
[bookmark: OLE_LINK5][bookmark: OLE_LINK6]	An attempt to concatenate strings with a combined length greater than 255 characters.

String operation too complex.
	More than ten substring operations pending. Simplify the string statement.

Subscript undefined.
	An attempt to access an array element undefined by the DIM statement.

Syntax error.
	A variable with a reserved word embedded. (DISTANCE, CLOCK, VERIFY)
	Missing and/or wrong punctuation.
	Misspelled reserved word.

The buffer has not been assigned.
	An attempt to access a file buffer area not assigned to a file.

The buffer number is not available.
	The buffer number is less than one and/or greater than 15.
	An attempt to access a file buffer area greater than the number specified when SUPERBASIC initialized.

Undefined function.
	An attempt is made to execute a FN statement and the specified function was not previously defined.

Undefined user function.
	An attempt is made to execute a USR statement and the specified USR number was not defined via DEFUSR.

User abort.
	A deliberate error produced by ERROR 23. This is used for debugging.

Write protected media.
	An attempt to write to a write protected disk.

RESERVED WORDS in MAX-80, MODEL 4 and ESOTERIC BASIC (in alphabetical order)

SUPERBASIC
SUPERBASIC

Page 160
Page 159
Word	Dec	Hex
'	251	FB
*	207	CF
+	205	CD
-	206	CE
/	208	D0
<	214	D6
=	213	D5
>	212	D4
ABS	217	D9
AND	210	D2
ASC	246	F6
ATN	228	E4
BIN$	254	FE
CALL	174	AE
CDBL	241	F1
CHAIN	169	A9
CHR$	247	F7
CINT	239	EF
CLEAR	184	B8
CLOSE	166	A6
CLS	132	84
CMD	133	85
COS	225	E1
CSNG	240	F0
CVD	232	E8
CVI	230	E6
CVS	231	E7
DATA	136	88
DEF	176	B0
DEFDBL	155	9B
DEFINT	153	99
DEFSNG	154	9A

Word	Dec	Hex
DEFSTR	152	98
DIM	138	8A
ELSE	149	95
END	128	80
EOF	233	E9
ERASE	182	B6
ERL	194	C2
ERR	195	C3
ERROR	158	9E
EXIT	179	B3
EXP	224	E0
FIELD	163	A3
FIX	242	F2
FN	190	BE
FOR	129	81
FRE	218	DA
GET	164	A4
GOSUB	145	91
GOTO	141	8D
HEX$	252	FC
HR or WC	185	B9
IF	143	8F
INKEY$	201	C9
INP	219	DB
INPUT	137	89
INSTR	197	C5
INT	216	D8
KILL	170	AA
LABEL	186	BA
LEFT$	248	F8
LEN	243	F3
LINE	156	9C

Word	Dec	Hex
LIST	180	B4
LLIST	181	B5
LOAD	167	A7
LOC	234	EA
LOF	235	EB
LOG	223	DF
LPRINT	175	AF
LSET	171	AB
MEM	200	C8
MERGE	168	A8
MID$	250	FA
MKD$	238	EE
MKI$	236	EC
MKS$	237	ED
NEW	187	BB
NEXT	135	87
NOT	203	CB
ON	161	A1
OPEN	162	A2
OR	211	D3
OUT	160	A0
PEEK	229	E5
POINT	198	C6
POKE	177	B1
POS	220	DC
PRINT	178	B2
PUT	165	A5
RANDOM	134	86
READ	139	8B
REM	147	93
RESET	130	82
RESTORE	144	90

Word	Dec	Hex
RESUME	159	9F
RETURN	146	92
RIGHT$	249	F9
RND	222	DE
ROW	255	FF
RSET	172	AC
RUN	142	8E
SAVE	173	AD
SET	131	83
SGN	215	D7
SIN	226	E2
SORT	157	9D
SOUND	140	8C
SQR	221	DD
STEP	204	CC
STOP	148	94
STR$	244	F4
STRING$	196	C4
TAB(188	BC
TAN	227	E3
THEN	202	CA
TIME$	199	C7
TO	189	BD
TROFF	151	97
TRON	150	96
USING	191	BF
USR	193	C1
VAL	245	F5
VARPTR	192	C0
WPEEK	253	FD
ZERO	183	B7
[209	D1

Notes

All numbers are hexadecimal unless suffixed with ‘d’. When specific models are noted for an entry point, any additional entry points refer to those specific model(s) until different specific models are noted. If an entry point has multiple capabilities, some capabilities may be noted by specific models. This does not supersede the specific models for entry points.

MODEL 4 and ESOTERIC (MAX-80 either SHIFT key):
<LEFTSHIFTF1> cancels <LEFTSHIFTF2> and/or <LEFTSHIFTF3>

<LEFTSHIFTF2> activates the <CLEAR> key as an ALT key. When the <CLEAR> key is held down and a letter key, A through Z, is pressed, the value returned is the letter key code plus 40. The <LEFTSHIFTF2> function recognizes the condition of the CAPS mode. i.e., In CAPLOCK <ALTC> = 83, and <ALTSHIFTC> = 83. In upper/lower case <ALTC> = A3, and <ALTSHIFTC> = 83.

<LEFTSHIFTF3> activates the <CLEAR> key as an ALTCTRL key. When the <CLEAR> key is held down and another key is pressed including <ENTER>, <BREAK>, and the arrow keys, the value returned is the key pressed plus 80. When the <CLEAR> key is held down and a shifted (either <SHIFT> key) letter key is pressed, the value returned is the letter key code plus 60. i.e., <ALTCTRLC> = E3, <ALTCTRLSHIFTC> = C3. The <LEFTSHIFTF3> function disregards the condition of the CAPS mode.

For the values returned by these keys, please refer to Appendix A.

The following is the format used for entry points:

Hexadecimal entry point address (column 1)

ADDR [label]	brief description

							The label surrounded by square brackets (the label starts in column 7)

MAX-80:
0000 [SUPV]	CLS, VIDEO WIDTH, and FUNCTION KEYS

						INPUT		AF on exit			FUNCTION
						A		B
						0		n/a		1F						Clear display
						1		n/a		00						Set VIDEO to 40x10 and clear display
						2		n/a		00						Set VIDEO to 50x18 and clear display
						3		0			B register		Set F1 through F4 to their default values
						3		1			B register		Set F1 to routine @ DE and VD (see below)
						3		2			B register		Set F2 to routine @ DE and VD
						3		3			B register		Set F3 to routine @ DE and VD
						3		4			B register		Set F4 to routine @ DE and VD
						3		5			B register		Set F5 <SHIFTF4> to routine @ DE and VD
						3		>5		B register		VD: value (DATA) with F-key jump -2
						4		n/a		00						perform <SHIFT-F1>
						5		n/a		00						perform <SHIFT-F2>
						6		n/a		00						perform <SHIFT-F3>
						>6	n/a		A-6						no function (ignored)

MODEL 4:
0000 [SUPV]	CLS, VIDEO WIDTH, and FUNCTION KEYS

						INPUT		AF on exit			FUNCTION
						A		B
						0		n/a		1F						Clear display
						1		n/a		00						Set VIDEO to 40x10 and clear display
						2		n/a		00						Set VIDEO to 50x18 and clear display
						3		0			B register		Set F1 through F6 to their default values
						3		1			B register		Set F1 to routine @ DE and VD (see below)
						3		2			B register		Set F2 to routine @ DE and VD
						3		3			B register		Set F3 to routine @ DE and VD
						3		4			B register		Set F4 <RIGHTSHIFTF1> to routine @ DE and VD
						3		5			B register		Set F5 <RIGHTSHIFTF1> to routine @ DE and VD
						3		6			B register		Set F6 <RIGHTSHIFTF3> to routine @ DE and VD
						3		>6		B register		VD: value (DATA) with F-key jump -2
						4		n/a		00						perform <LEFTSHIFT-F1>
						5		n/a		00						perform <LEFTSHIFT-F2>
						6		n/a		00						perform <LEFTSHIFT-F3>
						>6	n/a		A-6						no function (ignored)

With a function key routine set, the KEYBOARD scan routine executes the function, and then returns with whatever is in the A register. If a key value is also desired, then LD A with the character just before the last RET instruction. If no key value is desired, then execute a XOR A just before the last RET instruction. Function key commands/characters do not repeat.

MODEL I, MODEL III, MAX-80, and MODEL 4:
The following entry points are for the MODEL I, MODEL III, MAX-80 and MODEL 4 using MULTIDOS. For the Model 4 using ESOTERIC, please refer to Entry points for ESOTERIC for entry point addresses; and, additional entry points.

MODEL I, MODEL III, MAX-80, and MODEL 4:
0003 [IRAM]		If 17, then we are in a MAX-80 or MODEL 4. If 11 then we are in ESOTERIC.

MAX-80 and MODEL 4:
0004					Contains the VIDEO width

0005 [STKEY]	Jumps to special first position keystroke when 40 is called. The address of the routine is loaded into 06. After performing some test on the keystroke, if it is not what you want simply return. Otherwise, you will have to remove (at least) two calls from the stack similar to this form:
										POP	QQ	;call to 0005
										POP	HL	;restore HL register
										POP	QQ	;call to 0040

MODEL I, MODEL III, MAX-80, and MODEL 4:
0008					Not used in DOS. BASIC normal RST 08.
0010					Jumps to PARSE under DOS. BASIC normal RST 10.
0013 [GETBT]	Get file byte into A register: DE => FCB (opened).
0018					Compare HL to DE using only AF.
001B [PUTBT]	Put byte in A register to device or file: DE => DCB or FCB (opened).
0020 					Not used by DOS. BASIC normal RST 20.
0028					Load overlay without returning to address after RST 28. For the MAX-80, MODEL 4, and ESOTERIC pressing the <BREAK> key does not go here!
002B [GETKI]	Scans keyboard once, returns 0 if no key, otherwise returns with ASCII value of key pressed in A register.
0030					Call to load/execute DEBUG.
0033 [PUTVO]	Puts character in A register onto video display. Returns with displayed character in A and the Z flag set.
0038					Used for Interrupt Mode 1.
003B [PUTPR]	Outputs character in A register to the device in the printer DCB. Returns with printed character in A and the Z flag set.
0040 [LINE]		Input into (HL) B characters (jumps to 05D9, use in place of 05D9).

0049 [KWAIT]	Calls 2B until a key is pressed.

MAX-80 and MODEL 4:
0050 [GETSI]	Get byte from RS232 into A register.
0055 [MACH]		If 01, then we are in a MODEL I or MAX-80 environment.

MODEL 4:
0055 [PUTSO]	Put byte in A register to RS232 (yes, the 0055 is correct same as MACH).

MAX-80:
0056 [PUTSO] 	Put byte in A register to RS232.

MODEL 4:
005A [IMAGE]	Contains image of PORT 84.

MODEL 4:
005C [WHERE]	Call to locate PC register. i.e., LD HL,PC. This is the same as 000B in the ROM.

MODEL I, MODEL III, MAX-80, and MODEL 4:
[bookmark: OLE_LINK10][bookmark: OLE_LINK11]0060 [DELAY]	Delay for interval. Uses BC for delay value. Exit: BC =0, A =0, “Z” set.
							Some estimated delays (in microseconds):
						 BC				MODEL I			MODEL III			MAX-80			MODEL 4
						0000			960,472d		969,713d			944,231d		1,034,339d	
						F780			928,285d		937,516d			912,879d		999,996d
						8790			508,630d		513,510d			500,007d		547,723d
						8544			499,998d		504,810d			491,535d		538,443d
						83FF			495,235d		500,001d			486,852d		533,314d
						7BC0			494,297d		468,776d			456,437d		499,996d

MODEL 4:
0800 08AF		RIGID disk driver area.
08B0 - 08DF Extended memory auxiliary driver area.
08E0 - 08FF Screen saver auxiliary driver area.

MAX-80 and MODEL 4:
0900 2FFF		Application area 3: If an application needs this area; and, CMD"fffff" is available, then the application must perform instructions similar to the code segment on the last page of Entry points for ESOTERIC.

MODEL 4:
3000 37FF		Application area 2: Used by several LIBRARY commands and utilities. An application may this area during CMD"fffff" provided the application sets bit 4 of SM1. Please see the last page of Entry points for ESOTERIC.

MAX-80:
3000 – 33FF		The second page of VIDEO refresh RAM.

3400 – 36FF		Application area 2: Used by several LIBRARY commands and utilities. An
3900 – 3BFF		application may this area during CMD"fffff" provided the application sets bit 4 of SM1. Please see the last page of Entry points for ESOTERIC.

MODEL I, MODEL III, MAX-80, and MODEL 4:
3800 38FF		PseudoRAM used for detecting key presses.

3C00 3FFF		VIDEO refresh RAM. The MULTIDOS and ESOTERIC video codes:

	CODE	ACTION
	0006	Ignored
	07		Beep (MAX-80, MODEL 4, and ESOTERIC)
	08		Backspace cursor one position and erase character under cursor
	09		Ignored
	0A		Linefeed/carriage return and erase new line
	0B0C	Ignored
	0D		Linefeed/carriage return and erase new line
	0E		Enable cursor character
	0F		Disable cursor character
	10		Enable reverse video/set reverse video high bit routine (MODEL 4 and ESOTERIC)
	11		Reset reverse video high bit routine (MODEL 4 and ESOTERIC)
	12		Set all VIDEO refresh RAM from cursor position to end of frame to value in (404C) (MAX-80, MODEL 4, and ESOTERIC [1221])
	13		Position cursor to HOME position (does not reset WIDE display, does not disable reverse video) (MAX-80, MODEL 4, and ESOTERIC)
	14		Scroll VIDEO and cursor up one line (MAX-80, MODEL 4, and ESOTERIC)
	15		Swap space compression/special characters (MODEL III, MODEL 4, and ESOTERIC)
	16		Swap alternate special characters with special characters (MODEL III flips bit 3 of 4210) (MODEL III, MODEL 4, and ESOTERIC)
	17		Set video to WIDE display
	18		Backspace cursor one position
	19		Advance cursor one position
	1A		Advance cursor one line
	1B		Back cursor one line
	1C		Homes cursor, disables reverse video, and resets WIDE display
	1D		Position cursor to beginning of line
	1E		Set all VIDEO refresh RAM from cursor position to end of line to 20
	1F		Set all VIDEO refresh RAM from cursor position to end frame to 20
	20BF	Display character at current cursor position and advance cursor.
	C0FF	If in special character mode, display N0C0 (0 to 63d) spaces and advance cursor position. If in special character mode, display character and advance cursor.

The following labels have the same meaning for all versions of MULTIDOS and ESOTERIC. Please refer to this table to determine the address for each model. If the address is the same for all versions of MULTIDOS then the address is shown shaded in
	light green

	Label
	MODEL I
	MODEL III
	MAX-80
	MODEL 4
	ESOTERIC

	JCL1
	404B
	446C
	400A
	400A
	1212

	SPOOL
	4053
	4053
	400B
	400B
	123B

	LINK
	4054
	4054
	400C
	400C
	123C

	ROUTE
	4055
	4055
	400D
	400D
	123D

	MEMTP
	4056
	4056
	400E
	400E
	1213

	DOBUF
	4058
	4058
	4010
	4010
	1215

	NULLS
	405A
	405A
	4012
	4012
	122A

	KBDCB *
	4015
	4015
	4015
	4015
	120B

	VODCB *
	401D
	401D
	401D
	401D
	1217

	PRDCB *
	4025
	4025
	4025
	4025
	1222

	TODOS *
	402D
	402D
	402D
	402D
	0883

	ABORT *
	4030
	4030
	4030
	4030
	0846

	SIDCB
	n/a
	41E5
	403A
	403A
	122B

	SODCB
	n/a
	41ED
	403D
	403D
	122C

	TIC
	4040
	4216
	4040
	4040
	120A

	Time Copy
	41FB
	426F
	n/a
	4151
	1351

	Time Storage
	4041
	4217
	4041
	4217
	0050

	MMB
	430E
	4215
	430E
	421D
	1245

	OLC
	430F
	426A
	430F
	421E
	1246

	OLB
	4310
	426B
	4310
	421F
	1247

	OLA
	4311
	426C
	4311
	4220
	1248

	SM0
	430C
	426D
	430C
	4221
	1249

	SM1
	430D
	426E
	430D
	4222
	124A

	KIM
	4047
	4265
	4047
	4223
	005E

	COMBF
	4318
	4225
	4318
	4225
	(0060)

	STKLD
	41E5
	41E5
	43FE
	42FE
	14FE

	IOBUF *
	4200
	4300
	4200
	4300
	1500

	DOS
	4400
	4400
	4400
	4400
	085B

	DATA
	4403
	4403
	4403
	4403
	1259

	EXEC
	4405
	4405
	4405
	4405
	0865

	ERROR *
	4409
	4409
	4409
	4409
	0861

	DEBUG
	440D
	440D
	4308
	440D
	084C

	TOPMM *
	4049
	4411
	4049
	4411
	0062

	MXLIN *
	n/a
	n/a
	4416
	4416
	n/a

	CAT *
	4419
	4419
	4419
	4419
	0849

	FILK *
	441C
	441C
	441C
	441C
	0803

	INIT *
	4420
	4420
	4420
	4420
	081C

	OPEN *
	4424
	4424
	4424
	4424
	0828

	CLOSE *
	4428
	4428
	4428
	4428
	080C

	DOING
	442B
	442B
	442B
	442B
	1211

	DLETE *
	442C
	442C
	442C
	442C
	080F

	LOAD *
	4430
	4430
	4430
	4430
	081F

	LRUN *
	4433
	4433
	4433
	4433
	0822

	Label
	MODEL I
	MODEL III
	MAX-80
	MODEL 4
	ESOTERIC

	READ *
	4436
	4436
	4436
	4436
	0837

	WRITE *
	4439
	4439
	4439
	4439
	083D

	VERF *
	443C
	443C
	443C
	443C
	083A

	POBOF *
	443F
	443F
	443F
	443F
	082E

	POSN *
	4442
	4442
	4442
	4442
	0834

	BCKSP *
	4445
	4445
	4445
	4445
	0806

	POEOF *
	4448
	4448
	4448
	4448
	0831

	DEXT *
	444B/4473
	444B/4473
	444B/4473
	444B/4473
	0800

	DIVID *
	4451
	4451
	4451
	4451
	0858

	PARAM *
	4454/4476
	4454/4476
	4454/4476
	4454/4476
	087A

	FIXDT
	445C
	n/a
	n/a
	n/a
	n/a

	PUNCH *
	n/a
	n/a
	445C
	445C
	005A

	DSTAT *
	n/a
	n/a
	445E
	445E
	08D5

	JKL
	4461
	4461
	4461
	4461
	0877

	CEOF
	4464
	4464
	4464
	4464
	0809

	VOD *
	4467
	4467
	4467
	4467
	088F

	PRT *
	446A
	446A
	446A
	446A
	088C

	GTIME *
	446D
	446D
	446D
	446D
	086E

	GDATE *
	4470
	4470
	4470
	4470
	0868

	DEXT *
	4473/444B
	4473/444B
	4473/444B
	4473/444B
	0800

	PARAM *
	4476/4454
	4476/4454
	4476/4454
	4476/4454
	087A

	DOTIT
	4479
	4479
	4479
	4479
	0889

	ADRQ
	447C
	447C
	447C
	447C
	08C6

	LWAIT
	4497
	4497
	4496
	4497
	08CC

	FPOS
	44A1
	44A1
	44A1
	44A1
	0812

	STATP
	n/a
	n/a
	44AB
	44AB
	0069

	MOTON
	44C9
	44C9
	44C9
	44C9
	08C9

	GRDUM
	44CC
	44CC
	44CC
	44CC
	086B

	SPRMT
	44CF
	44CF
	44CF
	44CF
	087D

	IUS *
	4410
	44D2
	4410
	44D2
	0871

	DUS *
	4413
	44D5
	4413
	44D5
	085E

	GTDCC
	44DA
	44DA
	44DA
	44DA
	08D8

	GTDCT
	44DB
	44DB
	44DB
	44DB
	08D9

	READV
	44DE
	44DE
	44DE
	44DE
	n/a

	READS
	44E1
	44E1
	44E1
	44E1
	08DF

	WRITS
	44E4
	44E4
	44E4
	44E4
	08E2

	DIRRD
	44E8
	44E8
	44E8
	44E8
	08E6

	DIRWT
	44EB
	44EB
	44EB
	44EB
	08E9

	RDIRP
	44EE
	44EE
	44EE
	44EE
	08EC

	WDIRP
	44F1
	44F1
	44F1
	44F1
	08EF

	USFR
	44F4
	44F4
	44F4
	44F4
	08F2

	GETDT
	44F7
	44F7
	44F7
	44F7
	08DC

	FIXRR *
	n/a
	n/a
	44FA
	44FA
	08A1

	DCT
	4500
	4500
	4500
	4500
	0900

Although this table includes ESOTERIC, please refer to the Entry points for ESOTERIC section for additional ESOTERIC entry points.

 [JCL1]	Holds the nesting level of a DO file when input is required.

 [SPOOL]	This byte is described as follows:

			BIT			IF SET 			IF RESET
			 0			inhibit LINK								permit LINK
			 1			inhibit unLINK							permit unLINK
			 2			inhibit ROUTE								permit ROUTE
			 3			inhibit unROUTE						permit unROUTE
			 4			ROUTE to file active				ROUTE to file inactive
			 5			SPOOLER active							SPOOLER inactive
			 6			SPOOLER buffer full					SPOOLER buffer not full
			 7			SPOOLER buffer has data			SPOOLER buffer empty

 [LINK]		This byte is described as follows:

			BIT			IF SET 			IF RESET
			 0			PR linked to SO							PR not linked to SO
			 1			PR linked to DO							PR not linked to DO
			 2			DO linked to PR							DO not linked to PR
			 3			DO linked to SO							DO not linked to SO
			 4			SO linked to PR							SO not linked to PR
			 5			SO linked to DO							SO not linked to DO

	Please note the next two bits are used for printer functions:

			 6	PR output to SO									PR output to parallel port

			 7	Linefeed generated							Carriage return alone
					after each Carriage return

 [ROUTE]	This byte is described as follows:

			BIT			IF SET 			IF RESET
			 0			PR routed to SO or file			PR not routed to SO
			 1			PR routed to DO							PR not routed to DO
			 2			DO routed to PR or file			DO not routed to PR
			 3			DO routed to SO							DO not routed to SO
			 4			SO routed to PR							SO not routed to PR
			 5			SO routed to DO or file			SO not routed to DO
			 6			KI routed to SI							KI not routed to SI
			 7			SI routed to KI							SI not routed to KI

 [MEMTP]	This word contains TOPMEM prior to executing DO files.

 [DOBUF]	This word is the pointer to current DO File Control Block.

 [NULLS]	Bits 73 contain the left margin, bits 20 contain the number of NULLS (00) sent after a linefeed.

MODEL I, MODEL III, MAX-80, and MODEL 4:
4015 [KBDCB] 	These eight bytes are defined as the KEYBOARD Device Control Block (DCB).
		DCB+0			This byte normally contains 1
		DCB+1,2		Driver address
	MODEL I and MODEL III:
		DCB+3
					BIT	0 Used by printer routine							SET = hardware form feed
							1 Used by printer routine							SET = hardware vertical tab
	MODEL I:
		DCB+4
					BIT	5 lower case													SET = lower case
	MODEL III:
		DCB+4
					BIT	0 upper case													SET = upper case
	MODEL I and MODEL III:
		DCB+5,6		Blink rate
		DCB+7		 Cursor blinks if this byte is zero.
	MAX-80, and MODEL 4:
		DCB+3,4		Driver address storage during route
		DCB+5
					BIT	0 Used by printer routine							SET = hardware form feed
							1 Used by printer routine							SET = hardware vertical tab
							2 Space compression/Special						SET = special characters
							3 lower case/CAP lock									SET = lower case
							4 key beep														SET = key beep
							5 blinking cursor											SET = blink
							6 graphics														<[LEFT]SHIFTF2> sets this bit.
							7 high bit set												<[LEFT]SHIFTF3> sets this bit.
		DCB+6		VIDEO cursor character
		DCB+7		VIDEO scroll protect. The number of lines protected is determined by the highest bit set. The number of lines = N+1 where bit N is set. i.e., set bit 4 to protect 5 lines (protects 1 to 8 lines).

MODEL I, MODEL III, MAX-80, and MODEL 4:
401D [VODCB] 	These eight bytes are defined as the VIDEO Device Control Block (DCB).
		DCB+0			This byte normally contains 7
		DCB+1,2		Driver address
		DCB+3,4		Video refresh RAM position
									MODEL I/III:	3C00 to 3FFF
									MAX-80:				40x10: 3C00 to 3FFF, 50x18 3C00 to 3FFF and 3000 to 337F
																(3380 through 33FF is used by [C]BASIC and SSAVER)
									MODEL 4:			3C00 to 3FFF
									NOTE: For the MAX-80 and MODEL 4 please refer to FIXRR (44FA)
		DCB+5			Character storage if cursor is on
	MODEL I and MODEL III:
		DCB+6			VIDEO cursor character
		DCB+7			not used
	MAX-80, and MODEL 4:
		DCB+6			VIDEO column position (0 to 3F or 0 to 4F)
		DCB+7			VIDEO row position (0 to F or 0 to 17)

MODEL I, MODEL III, MAX-80, and MODEL 4:
4025 [PRDCB] 	These eight bytes are defined as the PRINTER Device Control Block (DCB).
		DCB+0			This byte normally contains a 6
		DCB+1,2		Driver address
		DCB+3			Maximum number of printed lines per page
		DCB+4			Line counter (base = 0)
		DCB+5			Maximum number of characters per line
		DCB+6			Character counter (base = 0)
		DCB+7			The number of nonprinted lines per page (sum of top and bottom margins)

402D [TODOS]	Exit to indicate the completion of a DOS command, error or no error.

4030 [ABORT]	If not in BASIC, jumps to 402D after resetting Stack Pointer to the DOS stack, [STKLD], and prompts you "Insert SYSTEM <ENTER>". If in BASIC, returns you to the prompt (safe exit from unknown territory provide system RAM has not been contaminated).

MODEL III is eight bytes, and; MAX-80 and MODEL 4 are three bytes
 [SIDCB]	DCB for the RS232 input.

 [SODCB]	DCB for the RS232 output.

 [TIC]		This byte increases by one for each real time interrupt.

 [KIM]		Points to the terminator byte after executing a DOS function.

 [TOPMM]	This word contains the address of the highest available memory location for DOS. BASIC temporarily sets this word to a different value during CMD"fffff" execution. The contents of (TOPMM) is referred to as TOPMEM.

MODEL 4:
4048 [BEE0]		Pointer to sound routine. Tone in A and duration in E.

MAX-80 and MODEL 4:
404C [CEOFC]	Stores character for write to end of VIDEO when a 12 is sent to VIDEO routine.

404D [BREAK]	BREAK KEY status. If nonzero, the KEYBOARD returns a zero when <BREAK> is pressed. The DOS command mode sets this byte to zero.

404E [PARSE]	Increments the HL register pair, interrogates the byte in HL, skips spaces and returns with "C" set if numeric or "Z" set if 3A and/or 0.

MODEL I, MODEL III, MAX-80, and MODEL 4:
405D [DBSP]		This area (23 bytes) are used as DEBUG scratch pad when DEBUG is active.

4080 4150		Scratch pad used by BASIC and several DOS functions.

 [MMB]		Set to nonzero to inhibit Minidos. The DOS and BASIC command modes set this byte to zero. The overlay loader sets this byte to a nonzero value before loading an overlay, and resets this byte to zero after completion of the overlay function.

 [OLC]		Storage of the overlay mask value plus one of the overlay in the overlay area when Minidos is invoked. Upon Minidos exit, Minidos reloads this overlay and sets this byte to zero.

 [OLB]		The overlay mask of the previous overlay when a new overlay is executed.

 [OLA]		Current overlay mask. The overlay mask is bits 5, 3, 2, 1, and 0.

 [SM0]		File attributes. The following comments apply if the noted bit is set.
							BIT 0.	After a file is OPENed this bit is set if the file has an attribute of EXEC and/or NONE.
							BIT 1.	Set if LRUN, 4433, is entered. This bit is reset before the program executes.
							BIT 2.	Ignore PASSWORDS. Reset when file is OPENed.
							BIT 3.	Get file attributes from special sevenbyte area (doesn't RAM date). Reset after file is CLOSEd.
							BIT 4.	Set if EXEC, 4405, is entered. This bit is reset at the DOS command prompt.
							BIT 5.	Accept ! " # $ % & < > ? @ in a filespec.
							BIT 6.	Accept numbers as the first character in a filespec and/or extension.
							BIT 7.	Do not convert lowercase to uppercase. (accepts any character greater than 3D in filespec.)

 [SM1]		System attributes. The following comments apply if the noted bit is set.
							BIT 0. Debug active.
							MODEL I, MODEL III, MAX-80, and MODEL 4:
							BIT 1. Library1/EXT is in RAM from 5200 to 68FF.
							ESOTERIC:
							BIT 1. Library1/EXT is in RAM from 4A00 to 60FF.
							MODEL I, MODEL III, MAX-80, and MODEL 4:
							BIT 2. Library2/EXT is in RAM from 5200 to 68FF.
							ESOTERIC:
							BIT 2. Library2/EXT is in RAM from 4A00 to 60FF.
							MODEL I and MODEL III:
							BIT 3. APPEND and/or RESTOR invoked in Library2/EXT.
							BIT 4. DIR invoked in Library1/EXT
							MAX-80 and MODEL 4:
							BIT 3. Library3/EXT is in RAM area 5200 to 68FF.
							ESOTERIC:
							BIT 3. Library3/EXT is in RAM area 4A00 to 60FF.
							MAX-80:
							BIT 4. 3400 to 36FF and/or 3900 to 3BFF has been altered.
							MODEL 4:
							BIT 4. 3000 to 37FF has been altered.
							ESOTERIC:
							BIT 4. 4200 to 49FF has been altered.
							BIT 5. In BASIC. This bit is reset during CMD"fffff".
							BIT 6. Type ahead has bytes in the type-ahead buffer.
							BIT 7. DO active.

 [COMBF]	DOS command mode input buffer. MODEL I and MODEL III are 64d bytes. MAX-80 MODEL 4, and ESOTERIC are 81d (sic) bytes; however, you can only input 80d characters.

 [STKLD]	The DOS stack area is quite sufficient. For the MAX-80, MODEL 4, and ESOTERIC the stack has ABORT above STKLD in case a return is invoked with no return pending. The stack depth is as follows:

							MODEL I				MODEL III				MAX-80				MODEL 4				ESOTERIC
		Location	41E5H					41E5H						43FEH					42FEH					14FEH
		Depth			 175d					 175d						 149d					 136d					 144d

							For both the MAX-80 and MODEL 4, the command buffer is just below the stack area (sort of gives you additional 81d bytes).

Time Storage is in ssmmhhyyddmm format. If the interrupts are enabled Time Storage is updated once per second.

Time Copy is a copy of Time Storage that is used to set the date and time (approximate time) if the computer is re-booted. NOTE: MODEL I time copy does not have seconds (format is mmhhyyddmm).

MODEL I and MAX-80:
4200	[IOBUF]	General purpose 100 byte I/O buffer. Reference MODEL III/4 as 4300.

MODEL III and MODEL 4:
4300	[IOBUF]	General purpose 100 byte I/O buffer. Reference MODEL I & MAX-80 as 4200.

4400 [DOS]		Entry to load Command/DOL and enter the DOS command level. The Stack Pointer is loaded with the system stack, STKLD, and DO is checked. If DO is active, key characters are obtained from the DO file. If DO is not active, the contents of KIM is examined to see if the terminator was a comma, indicating a multiple DOS command. If the contents of KIM is not a comma, then 'MULTIDOS' is printed and you may input a DOS command.

4403 [DATA]		This word has information for extension data.

4405 [EXEC]		Entry to execute the command at HL. On exit the HL is at the first byte past the terminator comma and/or space. {CALL EXEC}

4409 [ERROR]	Entry point to DOS error library. Error code is the lower 6 bits of the A register. If bit 6 is set, then the decimal error is not printed. If bit 7 is set, then this routine returns to the caller. If bit 7 is not set, this routine exits to 402D.

 [DEBUG]	Debugger load/execute code.

 [TOPMM]	This word contains the address of the highest available memory location for DOS. BASIC temporarily sets this word to a different value during CMD"fffff" execution.

MAX-80 and MODEL 4:
4416 [MXLIN]	VIDEO maximum line condition. Returns in 40X10: A=40, D=10; in 50X18: A=50, D=18. i.e., A call to this address returns the number of columns in the A register and the number of rows in the D register.

4419 [CAT] Obtain directory (unsorted) on a mounted disk.

	Entry:
		A = not used.
		B = function. (see below)
		C = logical drive spec.
		DE = not used.
		HL =	RAM area, if function directs to RAM. You must either reserve all of memory from (TOPMM) to FFFF or ensure that this is below (TOPMM).

	Temporary exit:	(if any of bits 3,4, and/or 5 is set in B at entry). Call again to get the balance of the directory.

		A <> 0 with Z set if no error.
		HL = free granules.
		BC = ?
		DE = ?
		SP = free to abort reentry. However, proper abort is put FF in OLA, 4220.

	Full exit:
		A = error code if Z flag not set.
		B = number of directory sectors read.
		C = ?
		HL = free granules.
		DE = last RAM byte used +1, else 0 if function does not direct to RAM.

	Function:
		Bit pattern of B register.

			BIT		SET 											RESET
			 0		Place files in RAM											Display onto VIDEO
			 1		Include I files
			 2		Include S files – requires bit 1 set
			35		Bits 3 5 are the lower protect area
						in lines + 3
			 6		override bits 05, and return with
						free granules in HL.
			 7		Return with error												Display error at
						in A register.													current cursor position.

						The A register contains the error, regardless of bit 7.

	When the directory information is directed to RAM, the format is: 8 bytes disk name, 8 bytes disk date, then 10 bytes for each file padded to the right with spaces. If RAM area is below (TOPMM), then usage is limited to (TOPMM). See sample program 1.

441C [FILK]		Entry DE => FCB (20 bytes), HL => filespec. FILK transfers the filespec from (HL) to (DE). Case conversion is in accordance to the bits in SM0. A = error.

File Control Block

A file control block, FCB, is 20 contiguous bytes of RAM designated by the user. Before open, the FCB has the filespec left justified, terminated with 0D and/or 03. After open the FCB is defined as follows:

FCB+00:			BIT 7	Set to indicate an open file.
						BIT 6	Set by POSN (i.e., RANDOM I/O in BASIC). Having this bit set retains the EOF on close, unless the file is extended.
						BIT 5	Set if the buffer does not contain the current sector.
						BIT 4	Set if the buffer contents have been changed.
						BITS 31 Access password level.
						BIT 0	Set forces CLOSE to write a new DIREC. This bit is set whenever a write is made to the file.

FCB+01:			reserved for future use

FCB+02:			Only used by BASIC during OPEN"O" and/or OPEN"E".

FCB+03,+04:	Buffer address for reads and/or writes. Initially set to HL when INIT and/or OPEN is executed.

FCB+05:			PNR. Position in Next Record (NRN = FCB+0A, FCB+0B)

FCB+06:			The logical drive number (bit 4 indicates the second side of a twovolume drive).

FCB+07:			DIREC position code.

FCB+08:			PER. Position in Ending Record. (ERN = FCB+0C, FCB+0D)

FCB+09:			LRL. Logical Record Length.

FCB+0A,+0B: NRN. Next record number.

FCB+0C,+0D: ERN. Ending record number.

FCB+0E,+0F: A copy of DIREC+16 and DIREC+17 (All numbers are hexadecimal!).

The balance of the FCB FCB+10 through FCB+1F contain data in 4 byte clusters.

FCB+10 through FCB+13:	First two bytes are the total granules prior, the next byte is the starting cylinder for this segment, and the last byte contains the relative granule (bits 7,6,5) and the number of contiguous granules less one (bits 4,3,2,1,0).

FCB+14 through FCB+17, FCB+18 through FCB+1B, and FCB+1C through FCB+1F are the same as FCB+10 through FCB+13.

In the description of following entry points, if an error can occur, is indicated with "A = error" at the end of the description. No error if the Z flag is set.

4420 [INIT]		Entry: DE => FCB (with filespec), HL => 100 byte buffer. INIT calls OPEN, 4424, to see if the file exists. If the file exists, control returns to the caller. Otherwise, the file is created with the logical record length set to the contents of the B register, then the file is opened and the C flag is set. A = error.

4424 [OPEN]		Entry: DE => FCB (with filespec), HL = > 100 byte buffer. OPEN modifies the FCB containing the filespec to open. The LRL is extracted from the DIREC of the filespec and not from the B register. A = error.

4428 [CLOSE]	Entry: DE => FCB (opened). CLOSE completes, if necessary, the last write to the filespec, updates the DIREC and dates the file. Mandatory after a write to a file. A = error.

442B [DOING]	This byte contains the nesting level of DO activity.

442C [DLETE]	Entry: DE => FCB (opened). DLETE deallocates all granules assigned to the filespec. A = error.

4430 [LOAD]		Entry: DE => FCB (filespec). LOAD places the filespec into RAM. A = error.

4433 [LRUN]		Entry: DE => FCB (filespec). LRUN calls LOAD, and pushes the entry point. A return is executed if the file has an attribute of EXEC and/or NONE; else, if DEBUG is active, LRUN transfers to DEBUG. A = error.

4436 [READ]		Entry: DE => FCB (opened). If the LRL = 0, READ reads a physical record into the contents of FCB+3 and FCB+4. If the LRL <> 0, READ transfers a LRL number of bytes from FCB+3 and FCB+4 to (HL), reading a physical record into FCB+3 and FCB+4 as necessary. A = error.

4439 [WRITE]	Entry: DE => FCB (opened). If the LRL = 0, WRITE writes one physical record from the contents of FCB+3 and FCB+4. If the LRL <> 0, WRITE transfers a LRL number of bytes from the (HL) to the contents of FCB+3 and FCB+4, writing a physical record if necessary. A = error.

443C [VERF]		Entry: DE => FCB (opened). VERF calls WRITE then rereads the sector for parity. A = error.

443F [POBOF]	Entry: DE => FCB (opened). POBOF sets the FCB to the status of a just opened file position zero. A = error.

4442 [POSN]		Entry: DE => FCB (opened). POSN sets the FCB to the logical record in the BC register. A = error.

4445 [BCKSP]	Entry: DE => FCB (opened). BCKSP sets the FCB one logical record less than the FCB had. A = error.

4448 [POEOF]	Entry: DE => FCB (opened). POEOF sets the FCB at the end of file. POEOF should return the error 1C.

4451 [DIVID]	DIVID divides the contents in the HL register by the contents in A register, leaving the quotient in the HL register and the remainder in the A register. If A is zero on entry, HL returns FFFF.

MODEL I:
445C [FIXDT]	Required to ensure that the correct Floppy Disk Controller (FDC) chip is selected. i.e., the MODEL I switches density by switching in/out the single-density only FDC chip (FD1771-01) instead of selecting the density in the double-density FDC chip (FD1791-02).

MAX-80 and MODEL 4:
445C [PUNCH]	Contains address of the 10 byte table that has the codes returned for <ENTER>, <SHIFTENTER>, <CLEAR>, <SHIFTCLEAR>, <BREAK>, <SHIFTBREAK>, <>, <SHIFT>, <>, <SHIFT>, <>, <SHIFT>, <>, <SHIFT>, <SPACE> and <SHIFTSPACE>.

445E [DSTAT]	Returns the status of the logical drive in the C register. The Z flag is reset if no disk, the Z flag is set if there is a disk mounted, and the C flag is set if write protected.

MODEL I, MODEL III, MAX-80, and MODEL 4:
4461 [JKL]		Dumps entire VIDEO refresh RAM to the address in the PRDCB+1 and PRDCB+2, converting nonASCII characters to periods. This is where <J><K><L> goes.

4464 [CEOF]		Entry: IX => FCB (opened). CEOF returns with the HL = NRN, C = PNR. If the FCB is positioned at the EOF, A = 1C. If the FCB is positioned beyond the EOF, A = 1D. If the FCB is less than the EOF, A = 0 and Z flag is set.

4467 [VOD]		Entry: HL => message. VOD is the general message display routine. VOD outputs a byte to PUTVO, 33, until it encounters a 03, and/or 0D terminator. Only the 0D terminator is sent to PUTVO. The HL register is positioned one byte after the terminator character.

446A [PRT]		Entry: HL => message. PRT is similar VOD, except the output is PUTPR, 3B, instead of PUTVO, 33.

446D [GTIME]	Entry: HL => 8 byte buffer. GTIME returns the current RAM time in the format hh:mm:ss. On exit, HL is one position after the 8 byte buffer.

4470 [GDATE]	Entry: HL => 8 byte buffer. GDATE returns the current RAM date in the format mm/dd/yy. On exit, HL is one position after the 8 byte buffer.

4473 [DEXT]		Entry: DE => FCB (filespec). HL => extension. DEXT puts extension in filespec if filespec does not have an extension. This function is also available at 444B.

4476 [PARAM]	Entry: DE => parameter list. PARAM interrogates the parameter list and sets the addresses accordingly. A parameter list consists of one to six character phrases, padded to the right with spaces if necessary, followed by a two byte address, and terminated with zero. . This function is also available at 4454.

4479 [DOTIT]	The FORMS routine calls this address when the software indicates the form is at the top of page. DOTIT points to a return instruction whenever MULTIDOS is initialized. See sample program 2.

447C [ADRQ]		Entry: IY => DCT entry. If floppy and the DCT is not locked, ADRQ loads DCT+0 with the contents of the A register, then sets DCT+6, DCT+7, DCT+8, and DCT+9, accordingly.

 [LWAIT]	This routine loads the floppy disk command register with the contents of the A register, then waits about 62 micro seconds before returning.

44A1 [FPOS]		Entry: IX => FCB. FPOS returns the ERN in the HL register, and the PER in the A register.

MAX-80 and MODEL 4:
44AB [STATP]	This routine returns the printer status, considering status of ROUTE, spooler, serial output, and/or the parallel port. Z = device ready.

MODEL I, MODEL III, MAX-80, and MODEL 4:
44C9 [MOTON]	Entry: C = logical drive number. This jumps to the routine for floppy disk drive select, and motor turn on.

44CC [GRDUM]	Dumps entire VIDEO refresh RAM to the address in the PRDCB+1 and PRDCB+2, including graphic characters. This is where <H><J><K> goes.

44CF [SPRMT]	Displays "Insert SYSTEM <ENTER>", and waits for the <ENTER> key to be pressed, then returns. This is similar the ABORT routine without setting SP to STKLD.

[bookmark: OLE_LINK12] [IUS]		Insert a task into 1 of 4 slots (numbered 0 through 3). The A register contains the slot number and the DE register contains the address of the routine. Uses HL. When an interrupt task is entered, the AF, BC, DE, HL, and IX register pairs have been saved and the interrupts are disabled and must remain disabled. The HL register is at the start of the routine upon entry. MULTIDOS and ESOTERIC use slot 0 for special utilities (e.g., Screen Saver), slot 1 for the spooler, slot 2 for typeahead (not MODEL I), and slot 3 for the clock (not MODEL III). For the MAX-80, MODEL 4 and ESOTERIC, there are 8 slots (numbered 0 through 7).

 [DUS]		Delete task in slot A. Uses AF, DE, and HL.

44DA [GTDCC]	Position IY register to the logical Drive Control Table (DCT) entry for the drive in the C register.

44DB [GTDCT]	Position IY register to the logical Drive Control Table (DCT) entry for the drive in the A register.

44DE [READV]	Entry: D = cylinder, E = sector, C = logical drive. READV checks the sector for readability. A = error.

44E1 [READS]	Entry: D = cylinder, E = sector, C = logical drive, HL = 100 byte buffer. READS transfers the sector data into (HL). A = error.

44E4 [WRITS]	Entry: D = cylinder, E = sector, C = logical drive, HL = 100 byte buffer. WRITS transfers the data from (HL) to the sector. A = error.

44E8 [DIRRD]	DIRRD issues a READS specifically looking for a DELETED DATA MARK (DDM). DIRRD returns if a DDM sector is read, otherwise DIRRD reads physical cylinder zero, physical sector zero, relative byte two, and updates DCT+3 with this byte (directory cylinder), then reads the new cylinder, sector zero. If the new cylinder, same sector does not return a DDM, then DIRRD tries "P" density1 and "P" density2. If still a DDM isn't found, DIRRD returns an error of 11 - Directory read error. A = error.

44EB [DIRWT]	Same as WRITS, except issues DDM. A = error.

44EE [RDIRP]	Read a DIREC. Entry: B = DIREC position code, C = logical drive number. The DIREC position code is a bit pattern loaded into FCB+7 when a file is opened. (The DIREC code is the only way the system knows where to put any new information. e.g., CLOSE. This is why you should never change diskettes after a file is opened and remains open until CLOSE is called, even if nothing was written to the file. CLOSE simply checks the information in the FCB with the data in the DIREC, if CLOSE finds a difference, CLOSE writes the data in the FCB to the DIREC whose position code is in FCB+7.) Bits 7, 6, and 5 contain the relative offset in the sector. Bits 4, 3, 2, 1, and 0 contain the relative directory file sector. If a directory starts on physical sector 0, then sector 2 is relative directory file sector 0. RDIRP returns with the HL => IOBUF + B's DIREC position code, e.g. B = 110xxxxxB then HL = 43C0. A = error.

44F1 [WDIRP]	Write a DIREC. Entry: HL => IOBUF, B = DIREC position code, C = logical drive number, and the information is in IOBUF. WDIRP exits with HL => IOBUF. A = error.

44F4 [USRF]		Entry: D = cylinder, E = sector, C = logical drive, HL = buffer, and the A register contains the Floppy Disk Controller code. USRF accepts any of the read sector, write sector, and/or write cylinder commands. A = error.

44F7 [GETDT]	Entry: C = logical drive. On exit the D register contains the contents of DCT+3 for the C register DCT.

MAX-80 and MODEL 4:
44FA [FIXRR]	This routine sets the cursor to the BC register. B = row, and C = column. On exit the HL has the refresh RAM video (cursor) position. Uses AF (with HL updated). FIXRR is used to position the cursor. e.g., to position the cursor at column 3, row 20d:

							LD		BC,1403H
							CALL	FIXRR

							FIXRR enables you to easily position the cursor without calculating the position on the second video page for the MAX-80; and, if a Model 4, setting the second page bit. The execution of this code segment running MULTIDOS on a MAX-80 would return 3243 in the HL register pair. The execution of this code segment running MULTIDOS on a Model 4 would set the second page bit and return 3E43 in the HL register pair.
NOTE: The lowest column is zero and the lowest row is zero.

4500 [DCT]	Drive control table 	Eight DCTs (10 bytes each). Each DCT is defined as follows:

			DCT+00: The main control byte containing the configuration information.
					Floppy bit pattern:
							BIT	0	Step rate LSB.
						BIT	1	Step rate MSB.
						BIT	2	If set Double step cylinders with a single step command.
						BIT	3	If set Perform a 1.8 to 1 division + 1 to read "P" density1.
						BIT	4	If set Perform a 1.8 to 1 division to read "P" density2.
						BIT	5	If set Double sided diskettes are treated as two volume.
						BIT	6	If set 8" floppy, otherwise 3½" and/or 5¼" floppy.
						BIT	7	If set Double density media, otherwise single-density.
					Hard disk bit pattern:				Memory DISK bit pattern:
						BIT	0	Step code LSB					N/A
						BIT	1	Step code							N/A
						BIT	2	Step code							N/A
						BIT	3	Step code MSB					SET TO ZERO		0
						BIT	4	SET TO ONE		1				SET TO ONE		1
						BIT	5	SET TO ZERO		0				SET TO ZERO		0
						BIT	6	SET TO ONE		1				SET TO ONE		1
						BIT	7	SET TO ZERO		0				SET TO ONE		1

			DCT+01:		(NIL is indicated by having ALL bits set.)

					BIT	0	Physical drive LSB
					BIT	1	Physical drive MSB
					BIT	2	undefined
					BIT	3	MEMDISK
					BIT	4	Set to one indicates HARD/MEMORY. A zero indicates floppy.
					BIT	5	Locks DCT. (No automatic update to DCT+06 through DCT+09 and no automatic density switching)
					BIT	6	Set to one to indicate software write protect.
					BIT	7	Set to zero to indicate drive in system.

			DCT+02:	Number of heads per volume. 01 to 08.

			DCT+03:	The directory cylinder. This byte is obtained from cylinder zero, sector zero, relative byte two. 01 to 3F for floppies.

			DCT+04:	Floppy only: The current cylinder where the head was positioned when this drive was last accessed and another drive is selected. This byte is not where the head is, if this drive is selected. The Disk Controller contains the value where the head is located when this drive is being accessed.

			DCT+05:	Sector offset. 00 or 01 (used by CAT, CAT/CMD, [V]FU/CMD and ZAP/CMD)

			DCT+06:	The number of sectors per granule. 01 to 00 (00 = 256)

			DCT+07:	The number of granules per cylinder. 01 to 08

			DCT+08:	The number of sectors per head. 01 to 00 (00 = 256)

			DCT+09:	The number of directory files sectors. 01 to 20

			DCT+0A:	Reserved for system use (direction for allocation: 00 = ignore DCT+0B, or FE = allocate down from DCT+0B [in contiguous granules, if possible], or FF = allocate up from DCT+0B [not necessarily contiguous]).

			DCT+0B:	Reserved for system use (starting cylinder for allocation 00 to FD).

			DCT+0C:	The most significant byte for the cylinder offset. 00 to FF

			DCT+0D:	The least significant byte for the cylinder offset. 00 to FF

			DCT+0E:	The head offset. 00 to 07

			DCT+0F:	The number of cylinders for hard disks (Floppies updated by CAT/CMD).

		When the configuration is floppy, DCT+06 through DCT+09 are updated to these values unless bit 5 is set in DCT+01: (SS = singlesided, DS = doublesided, SD = singledensity, DD = doubledensity)

							DCT+06	DCT+07		DCT+08		DCT+09
			SS/SD		 05		 02			 0A			 08
			DS/SD		 05		 04			 0A			 12
			SS/DD		 06		 03			 12			 10
			DS/DD		 06		 06			 12			 20

		You can establish other values to read a special format pattern by placing the respective values in the DCT and set bit 5 of DCT+01. e.g., NEWDOS/80 PDRIVE setting with TC=80, SPT=36, GPL=8, and DDGA=6.

			DCT+00 = 100110xxB (98H = 6mS, 99H = 12mS, etc. xx = stepping rate)

			DCT+02 = 02H
			DCT+06 = 05H ("....there are still 5 sectors per granule.")
			DCT+07 = 08H (granules per LUMP)
			DCT+08 = 28H (sectors per LUMP)
			DCT+09 = 1CH (DDGA * 5 2, 5 = DCT+06, 2 = 1 GAT + 1 HIT)

4D00 to 51FF	Overlay area. Reference ESOTERIC 1600 to 1AFF. All /DOL and /BOL files load into this area.

5200 to (TOPMM)	Application area 1. Reference ESOTERIC 4A00 to (TOPMM).

Sample Programs

Sample program 1 – Obtain directory on specified drive (default zero) protecting the bottom six lines.

			00001 KWAIT		EQU	0049H
			00002 ERROR		EQU	4409H
			00003 CAT			EQU	4419H
			00004					ORG		5200H
			00005 START		LD		C,0							;default drive zero
			00006					DEC		HL							;compensate for RST 10H action
			00007					RST		10H							;fetch next character
			00008					JR		C,HDRV					;”C” if numeric – Has DRiVe
			00009					JR		NZ,NODRV				;”NZ” if not colon (default drive zero)
			00010					RST		10H							;bypass colon
			00011 HDRV		AND		7								;strip ASCII
			00012					LD		C,A							;put drive number into C register
			00013					RST		10H							;fetch next character
			00014 NODRV		CP		27H							;is it an apostrophe (ancient two volume)
			00015					JR		NZ,ONEVOL				;”NZ” if single volume drive
			00016					SET		4,C							;indicate ‘prime’ side
			00017	ONEVOL	LD		B,18H						;value to protect six lines
			00018	DOMORE	CALL	CAT							;execute code in Minidos/DOL
			00019					JP		NZ,ERROR				;”NZ” if error – display error
			00020					OR		A								;did we display all files?
			00021					RET		Z								;”Z” if all files displayed
			00022					CALL	KWAIT						;wait for key press
			00023					JR		DOMORE					;loop until all files displayed (or error)
			00024					END		START

Sample program 2 - Create a title (header) for printouts via DOTIT, 4479

			00001 TODOS		EQU		402DH
			00002 TOPMM		EQU		4411H
			00003 DOTIT		EQU		4479H
			00004 PRT			EQU		446AH
			00005					ORG		0FC00H
			00006 START		LD		HL,MYCDE
			00007					LD		A,0C3H
			00008					LD		(DOTIT),A
			00009					LD		(DOTIT+1),HL
			00010					DEC		HL
			00011					LD		(TOPMM),HL			;protects routine
			00012					JP		TODOS
			00013	MYCDE		EXX										;MULTIDOS resident doesn't use alt regs.
			00014					LD		HL,MYTIT
			00015					CALL	PRT							;can call itself (safe because of EXX)
			00016					OR		A								;must return a non-zero
			00017					EXX										;put 'em back
			00018					RET										;back to caller
			00019 MYTIT		DEFM	'THIS IS MY WORK',0DH
			00020					END		START
Entry Points for MULTIDOS
[bookmark: _Hlk174381056]Entry Points for MULTIDOS

Page 184
Page 179
0000 [SUPV]	CLS, and FUNCTION KEYS

						INPUT		AF on exit			FUNCTION
						A		B
						0		n/a		1F						Clear display
						1		n/a		1F						Clear display
						2		n/a		1F						Clear display
						3		0			B register		Set F1 through F6 to their default values
						3		1			B register		Set F1 to routine @ DE and VD (see below)
						3		2			B register		Set F2 to routine @ DE and VD
						3		3			B register		Set F3 to routine @ DE and VD
						3		4			B register		Set F4 <RIGHTSHIFTF1> to routine @ DE and VD
						3		5			B register		Set F5 <RIGHTSHIFTF1> to routine @ DE and VD
						3		6			B register		Set F6 <RIGHTSHIFTF3> to routine @ DE and VD
						3		>6		B register		VD: Value (DATA) with F-key jump -2
						4		n/a		00						perform <LEFTSHIFT-F1>
						5		n/a		00						perform <LEFTSHIFT-F2>
						6		n/a		00						perform <LEFTSHIFT-F3>
						>6	n/a		A-6						no function (ignored)

With a function key routine set, the KEYBOARD scan routine executes the function, and then returns with whatever is in the A register. If a key value is also desired, then LD A with the character just before the last RET instruction. If no key value is desired, then execute a XOR A just before the last RET instruction. Function key commands/characters do not repeat.

[bookmark: OLE_LINK9]0003 [PUTPR]	Outputs character in A register to the device in the printer DCB. Returns with printed character in A and the Z flag set.
0008					Not used in DOS. BASIC normal RST 08.
0010					Jumps to PARSE under DOS. BASIC normal RST 10.
0013 [PUTVO]	Puts character in A register onto video display. Returns with displayed character in A and the Z flag set.
0018					Compare HL to DE using only AF.
001B [GETKI]	Scans keyboard once, returns 0 if no key, otherwise returns with ASCII value of key pressed in A register.
0020 					Not used by DOS. BASIC normal RST 20.
0023 [PUTSO]	Outputs character in A register to the RS-232. Returns with character set in A and the Z flag set.
0028					Load overlay without returning to address after RST 28. For the MAX-80, MODEL 4, and ESOTERIC pressing the <BREAK> key does not go here!
002B [GETSI]	Get character from RS-232 into A.
0030					Call to load/execute DEBUG.
0033 [PUTBT]	Put byte in A register to device or file: DE => DCB or FCB (opened).
0038					Used for Interrupt Mode 1.
003B [GETBT]	Get file byte into A register: DE => FCB (opened).

0050 to 0055	Storage for seconds, minutes, hours, year, day, and month

005E [KIM]		Points to the terminator byte after executing a DOS function.

0060 [DBUF]		Points to the DOS command buffer.

0062 [TOPMM]	This word contains the address of the highest available memory location for DOS. BASIC temporarily sets this word to a different value during CMD"fffff" execution.

0064 [BREAK]	BREAK KEY status. If nonzero, the KEYBOARD returns a zero when <BREAK> is pressed. The DOS command mode sets this byte to zero.

0069 [STATP]	This routine returns the printer status considering status of ROUTE, spooler, serial output, and/or the parallel port. Z = device ready.

0850 [DELAY]	Delay for interval. Uses BC for delay value. Exit: BC =0, A =0, “Z” set.
							Some estimated delays (in microseconds):
						 BC				ESOTERIC
						0000			1,034,349d	
						F780			1,000,005d
						7BC0			 500,005d

0880 [STKEY]	Jumps to special first position keystroke when 8B8 is called. The address of the routine is loaded into 0881. After performing some test on the keystroke, if it is not what you want simply return. Otherwise, you will have to remove (at least) two calls from the stack similar to:
										POP	QQ	;call to 0880
										POP	HL	;restore HL register
										POP	QQ	;call to 08B8

08A1 [FIXRR]	This routine sets the cursor to the BC register. B = row, and C = column. On exit the HL has the refresh RAM video (cursor) position. Uses DE, AF. FIXRR is used to position the cursor. e.g., to position the cursor at column 3, row 20d:

							LD		BC,1403H
							CALL	FIXRR

							The execution of this code segment running ESOTERIC on a Model 4 would return FE43 in the HL register pair.
							NOTE: The lowest column is zero and the lowest row is zero.

08B1 [KWAIT]	Calls 1B until a key is pressed.

08B8 [LINE]		Input into (HL) B characters.

08C1 [WHERE]	Call to locate PC register. i.e., LD HL,PC. This is the same as 000B in the ROM.

08C3 [PARSE]	Increments the HL register pair, interrogates the byte in HL, skips spaces and returns with "C" set if numeric or "Z" set if 3A and/or 0.

ESOTERIC:
1100 11AF		RIGID disk driver area.
11B0 - 11DF Extended memory auxiliary driver area.
11E0 - 11FF Screen saver auxiliary driver area.

120A [TIC]		This bytes increases by one for each real time interrupt.

120B [KBDCB]	These six bytes are defined as the KEYBOARD Device Control Block (DCB).
		DCB+0			This byte normally contains 1
		DCB+1,2		Driver address
		DCB+3,4		Driver address storage during route
		DCB+5
					BIT	0 Used by printer routine							SET = hardware form feed
							1 Used by printer routine							SET = hardware vertical tab
							2 Space compression/Special						SET = special characters
							3 lower case/CAP lock									SET = lower case
							4 key beep														SET = key beep
							5 blinking cursor											SET = blink
							6 graphics														<LEFTSHIFTF2> sets this bit.
							7 high bit set												<LEFTSHIFTF3> sets this bit.

1211	[DOING]	This byte contains the nesting level of DO activity.

1212 [JCL1]	Holds the nesting level of a DO file when input is required.

1213	[MEMTP]	This word contains TOPMEM prior to executing DO files.

1215	[DOBUF]	This word is the pointer to current DO File Control Block.

1217 [VODCB] 	These 0A bytes are defined as the VIDEO Device Control Block (DCB).
		DCB+0			This byte normally contains 2
		DCB+1,2		Driver address
		DCB+3,4		Video refresh RAM position (F800 to FF7F)
		DCB+5			Character storage if cursor is on
		DCB+6			VIDEO column position (0 to 4F)
		DCB+7			VIDEO row position (0 to 17)
		DCB+8			VIDEO cursor character
		DCB+9			VIDEO scroll protect. The number of lines protected is determined by the highest bit set. The number of lines = N+1 where bit N is set. i.e., set bit 4 to protect 5 lines (protects 1 to 8 lines).

1221 [CEOFC] 	Stores character for write to end of VIDEO when a 12 is sent to VIDEO routine.

1222 [PRDCB] 	These nine bytes are defined as the PRINTER Device Control Block (DCB).
		DCB+0			This byte normally contains a 2
		DCB+1,2		Driver address
		DCB+3			Maximum number of printed lines per page
		DCB+4			Line counter (base = 0)
		DCB+5			Maximum number of characters per line
		DCB+6			Character counter (base = 0)
		DCB+7			The number of nonprinted lines per page (sum of top and bottom margins)
		DCB+8			Bits 73 contain the left margin, bits 20 contain the number of NULLS sent after a linefeed.

122B	[SIDCB] These three bytes are defined as the RS-232 input device control block.

122E	[SODCB]	These five bytes are defined as the RS-232 output device control block.

1500	[IOBUF]	General purpose 100 byte I/O buffer. Reference MODEL I and MAX-80 as 4200; and, MODEL III and MODEL 4 as 4300.

1600 to 1AFF	Overlay area. Reference MULTIDOS 4D00 to 51FF.

1B00 to 41FF	Application area 3. If this area is used and invoked from ESOBASIC (always a possibility), then the application must abort ESOBASIC. Reference MODEL 4 MULTIDOS 0900 – 2FFF.

			Sample code segment to use application areas 3, 2, and 1 (needed for area 3)
						00001 SBSPA	EQU		1280H					;ESOTERIC, for MAX-80 and MODEL 4 = 4080H
						00002 CMDTP	EQU		12C6H					;ESOTERIC, for MAX-80 and MODEL 4 = 40C2H
						00003	NEST	EQU		12E7H					;ESOTERIC, for MAX-80 and MODEL 4 = 411BH
						00004 START	LD		A,(TODOS+2)		;get exit MSB
						00005				CP		DOS<-8				;is it the DOS entry point?
						00006				JR		Z,star2				;”Z” if executed from DOS
						00007				PUSH	HL						;save command parser
						00008				LD		HL,MSGBA			;locate HL to message
						00009				CALL	VOD						;display message
						00010				LD		A,(DOING)			;get ‘DO’ status
						00011				OR		A							;is ‘DO’ active?
						00012				CALL	Z,KWAIT				;wait for key press if ‘DO’ inactive
						00013				LD		HL,DOS				;DOS entry point
						00014				LD		(TODOS+1),HL	;value exit point with DOS entry
						00015				LD		A,(NEST)			;get BASIC’s nesting level
						00016				LD		HL,(CMDTP)		;get TOPMEM prior to CMD”fffff”
						00017 star0	DEC		A							;reduce nesting level: is it zero?
						00018				JR		Z,star1				;”Z” if unnested
						00019				LD		DE,CMDTP-SBSPA+1	;get difference between start and ...
						00020														;where nested TOPMEM is stored
						00021				ADD		HL,DE					;compute where nested TOPMEM is
						00022				LD		E,(HL)				;get nested TOPMEM LSB
						00023				INC		HL						;to where nested TOPMEM MSB is
						00024				LD		D,(HL)				;get nested TOPMEM MSB
						00025				EX		DE,HL					;value HL with nested TOPMEM
						00026				JR		star0					;loop until unnested
						00027
						00028 MSGBA	DEFM	28,31,’BASIC aborted!’,10,10
						00029				DEFM	‘Press any key to continue.’,3
						00030 star1	LD		(TOPMM),HL		;update TOPMEM
						00031				LD		(MEMTP),HL		;update MEMTOP in case invoked by ‘DO’
						00032				POP		HL						;retrieve command parser
						00033 star2											;where application starts

4200 to 49FF	Application area 2. If this area is used, then the application must set bit 4 in SM1, 124A. Reference MODEL 4 MULTIDOS 3000 to 37FF.

			Sample code segment to use application areas 2 and 1 (needed for area 2)
						00001				PUSH	HL						;save parser
						00002				LD		HL,SM1				;position HL to system attributes
						00003				SET		4,(HL)				;indicate application area 2 used
						00004				POP		HL						;retrieve parser

Entry Points for ESOTERIC

Entry Points for ESOTERIC
4A00 to (TOPMM)	Application area 1. Reference MULTIDOS 5200 to (TOPMM).
Page 183
access a means of involving a file in a read or write operation.

address a location in memory specified by a twobyte hexadecimal address.

alphabetic consisting of only the letters A through Z and/or a through z.

alphanumeric consisting of the numerals 0 through 9, and the letters A through Z and/or a through z.

argument an input to a function used to derive a value.

array an organized set of elements that is referenced by the array name and one or more subscripts.

ASCII American Standard Code for Information Interchange for values 0 through 127.

ASCII file a file that is an exact duplicate of the user input data, readable by LISTing the file.

background task a task performed by the microprocessor during an interrupt. Examples of background tasks are CLOCK, the SPOOLer, and TYPEahead.

backup a necessary process required to maintain your important data.

BASIC Beginner's Allpurpose Symbolic Instruction Code.

baud the rate of serial data transfer in bits per second.

binary – a base two number represented by the digits 0 and 1.

bit one binary digit; either a 0 or a 1.

boot the process of reloading the executive program in RAM.

break to interrupt a program or Library command.

buffer an area in RAM where data is held for processing.

byte the smallest unit of reading/writing from/to RAM.

close to terminate access to a file.

configuration The access state of the disk drives.

cylinder a track location of the disk drive's read/write head.

DAM Data address mark for floppy diskettes. The DAM for the directory cylinder is different than the DAM for file cylinders.

DCB Device Control Block: a small contiguous area in RAM used for the status and/or control of a device.

DCT Drive Control Table: a small contiguous area in RAM that has the drive's configuration information.

decimal – a base ten number represented by the digits 0 through 9.

default an action and/or value that is supplied by the executing program when you only press <ENTER> to a prompt or query. Or an action and/or value supplied by the program if you take no action.

delimiter a character that marks the beginning and end of data, and is not part of the data. e.g., the double quotation marks surrounding a string value

density the recording method used to write/read to/from a floppy diskette.

destination the device or address that receives data during a data transfer process.

device a physical piece of hardware such as the video display, a printer, a disk drive, a RS232 interface, etc.

directory a file on every disk that contains all of the information about other files.

disk – mass storage magnetic media that can be a floppy disk or a hard disk.

diskette mass storage magnetic media that is a floppy disk

DO the video Display Output.

drivespec a particular logical disk drive number (0 to 7).

:d a colon followed by an integer number from 0 through 7' to indicate a file's drivespec.

edit a process used to change existing information.

EOF End Of File.

entry point the address of a machinelanguage program where execution is to begin. Also referred to as the transfer address.

Exp the base 2 exponent used in single-precision and double-precision numbers. The exponent is offset by 129.

expression a variable or a logical sequence of variables, operators and/or functions.

/ext an optional extension of a filespec. Extensions are delimited by a preceding slash.

FCB File control block: a small contiguous area in RAM used for the status and/or control between the DOS and a disk file.

file a collection of unique data.

filename the name of a file.

filespec the name of a file with up to three additional options: the extension, the password, and the drivespec.

filter a program, positioned between a device on the computer, that can alter the data as it passes through the filter.

foreground task jobs performed by the microprocessor that you control.

format the process of initializing a disk with track and sector identification marks (ID) and creating a new directory on the disk.

gran/granule the smallest file allocation unit.

hexadecimal/hex a base 16 number represented by the numerals 0 through 9 and the letters A through F.

input the transference of data from you and/or a device to the computer.

interrupt a microprocessor signal that causes the software to suspend a foreground task in order to perform a background task. The background task usually returns control back to the foreground task.

I/O Input/Output.

KI Keyboard Input.

kilobyte 1024 bytes, i.e., 64 kilobytes or 64K = 1024 * 64 = 65,536 bytes.

logical record contiguous bytes of data that is accessed a one unit of a disk's file. MULTIDOS supports logical record lengths of 1 through 256.

Library commands a set of commonly used commands.

LSB Least Significant Byte.

machinelanguage data consisting of the microprocessor's instruction set.

modulo the domain of remainders from integer division by a modulus. e.g., a modulus of eight has eight possible remainders: 0 through 7, referred to as modulo 8.

MSB Most Significant Byte.

nil/null inactive and/or missing value. Null does not imply zero.

NRN Next Record Number.

nSB neither LSB nor MSB Not Most Significant Byte. Single-precision numbers have one nSB, and double-precision numbers have five nSBs.
			Single-precision numbers are stored in this format:
						LSB nSB MSB Exp
	Double-precision numbers are stored in this format:
						LSB nSB nSB nSB nSB nSB MSB Exp

object code meaningful machinelanguage data or file. All files executed by the computer must be in machinelanguage.

open the process of accessing a file.

output the transference of data from the computer to a device.

parameter an argument that you supply in a command line. Parameters are enclosed in parentheses and are usually optional.

.password the optional password assigned to a file, or the mandatory password required to access a file. Passwords are delimited by a preceding period.

physical record a disk file's sector

RAM Random Access Memory. RAM will lose data when power is removed.

reset the process of returning something to its initial state. Reset also means to boot the computer.

ROM Read Only Memory. ROM maintains information when power is removed.

RS232 the Electronic Industries Association's (EIA) standard for communication between two computers.

sector the smallest unit used to read/write to a disk. MULTIDOS uses 256 contiguous bytes for each physical record.

SI Standard Input or Serial Input.

SO Standard Output or Serial Output.

track a recording surface on a disk.

transfer address the address of a machinelanguage program where execution is to begin. Also referred to as the entry point.

utility a program that serves specific purpose. Utilities are much larger than Library commands and may use all of RAM.

word two adjacent bytes.
GLOSSARY
GLOSSARY

Page 192
Page 191
A
A, Basic. 103, 105
access password 13
entry points.161
alphabetic codes.6
ampersand (&H/&X)116
Append. 12
Application areas 164, 184
ASC117
ASCII codes6
Attrib. 13
Auto, DOS 14
AUTO, Basic105
automatic line numbering. . . . 103, 105

B
B, BASIC. 103, 106
backup MULTIDOS1
BACKUP. 47
BASIC101
BASIC !102
BASIC #102
BASIC *101
BASICH.101
Basic Errors.154
Basic key words 115, 159
BBASIC. 101, 140
Blink 16
BIN$.117
Boot. 16
Build 16

C
C, BASIC. 103, 106
C, MINIDOS.4
CALL.117
Cat 19
CAT 50
Cdir. 19
CDIR.50
CHAIN145
check directory 92
CLEAR, Basic.118
Clear, DOS. 20
Clock 20
CLOSE146
Clrdsk. 20
CLS, Basic.118
Cls, DOS. 20
CMD
	B119
	C119
	D119
	E119
	I143
	K119
	L120
	N143
	O 120, 143
	P120
	Q121
	R122
	S122
	T122
	U122
	V122
	W123
	X123
	Y123
	fffff123
commands, entering.2
commands, Library 11
commands, multiple DOS.3
commands, multiple auto 14
commands, repeat.3
commands, single keystroke. . . . 3, 103
commands, single letter103
Comp. 20
COMP. 51
compare files 20, 51
Config. 21
CONVERT 49
Copy. 26
COPY. 51
copying files4, 26, 51, 86
copying sectors 91
cross reference BASIC104
CUSTOM. 53
CVD150
CVI150
CVS150

D
D, Basic. 103, 107
D, MINIDOS.5
Date. 27
DBLFIX. 53
DCT178
Ddam. 27
Dead. 27
DDT 53
Debug28, 119
DEF FN.124
DEF USR125
delete, Basic 103, 107
deleted address marks0
Device. 32
Dir 32
directory, quick.4, 34
directory structure 93
disk, system.9
Do. 35
DOS errors.98, 119
drive control table178
drive, configuration.21, 178
drive, hard21, 178
drive, logical. 8, 21, 178
drive, physical21, 178
drive, rotation speed 53
Dump. 35
duplicate, diskette1, 47
duplicate, line numbers112

E
E, Basic. 103, 107
Entry Points.161
EOF153
ERASE125
erase disk. 19, 50
ERROR125
errors, Basic154
errors, DOS98, 119
EXIT.125
/ext.7

F
F, Basic. 103, 107
FCB173
FIELD149
File Control Block.173
filename.7
FILESPEC.7
find, Basic107
FIXDATE 54
fix directory 92
Fmap. 36
FMAP. 54
FORMAT. 55
format, pattern 48, 57
format, single cylinder 92
format, special 56
Forms 37
forms, filter 74
Free. 38
FU. 85

G
G, Basic. 103, 108
GET153
global editing Basic programs108
glossary.185
GOTO, on STOP130
GR. 58

H
HELP. 58
HEX$.126
HJK6

I
I, Basic. 103, 112
initialization, Basic 101, 102
INPUT127
INPUT, LINE129
INPUT#.148
INPUT#, LINE.148
INSTALL 59
INSTR128

J
JKL6

K
K, Basic.103
K, MINIDOS.5
keyboard, JKL/HJK6
keystroke, single 4, 32, 103
key words, Basic. 115, 159
KILL.5, 41, 103, 145

L
L, Basic. 103, 111
L, MINIDOS.5
LABEL128
label, resolving.104
Lib 39
Library commands. 11
LINE INPUT.129
LINE INPUT#148
LINE length116
line numbering, automatic105
line numbers.116
Link. 39
list, Basic 103, 112, 115, 123
List, DOS 40
LO. 59
LOAD, Basic145
Load, DOS 40
LOBO.0
LOC153
LOF153
logical cylinder.55, 92, 95
logical track 19, 33, 81, 82, 93
LSET.151
lumps0, 19, 36, 81, 92, 94, 95

M
M, Basic. 103, 112
M, MINIDOS.5
manual notation2
MERGE145
MEM 62
MEMDISK 63
MID$.130
MINIDOS4
minimum system disk9
MKD$.150
MKI$.150
MKS$.150
MODULE. 64
MONITOR 65
move, files 86
move, line numbers. 112, 114
multiple command.3

N
N, Basic. 103, 112
numbering, automatic line105
notation, Manual.2

O
O, Basic. 103, 113
offset, file. 60, 61
offset, head.21, 26, 179
on STOP GOTO.130
OPEN.147
overlay area. 179, 184

P
P, Basic. 103, 115
P, MINIDOS.5
packing BASIC programs.115
.password7
password, access. 13
password, disk. 41
password, update. 13
Patch 40
PCOPY 66
PRINT, Basic.131
PRINT, DOS. 40
PRINT#.149
Prot. 41
PRT 74
pseudo-double-density 80, 83
pseudo drive. 63
pseudo-logical tracks0
pseudorandom.131
PUT152

Q
quick, director4, 34

R
R, Basic.103
RA. 75
RAM [ROM and RAM] scan. 77
RANDOM.131
Remove. 41
Rename. 42
renumber BASIC.113
repair directory. 92
repeat commands3
replacement108
Reset 42
resolve labels.106
Restor. 42
RESTORE131
RND131
ROM [ROM and RAM] scan. 77
Route 43
RS. 77
RSET.151
RUN146

S
S, Basic.103
SAVE.146
Screen. 43
screen saver. 79
Setcom. 44
SETCOM. 78
side. 21, 25, 26
side effects. 43
SHOW. 78
SORT.120, 121, 132
Spool 44
SPOOL 78
SSAVER. 79
STOP, on.130
structure, directory. 93
SYSGEN. 80
system disk9

T
Tx/CMD and TWO/IDO. 84
TAB(#135
table of Contents ii
target 108
Time. 45
Topmem. 45
trace135
TROFF135
TRON.135
Type. 46
"TYPE".0

U
unpacking BASIC122
update password 13
user defined address marks.0
USR138

V
V, MINIDOS.5
V64 46
V80 46
Verify. 46
volume. 21, 25
VFU 85
VTOS.0

W
WPEEK139
write enable. 24
write protect 14, 24

Z
ZAP 90
zaps.193
ZERO.139

INDEX
INDEX

******** ZAP 001 ******** 12/27/84 ******** SYSTEM (optional)

High speed modification. Most software high speed modifications for the Model I require an output to an I/O port. Due to size constraints, none of the library commands have a facility to accomplish this task. However, MULTIDOS will OUT the byte in relative position F0H to the PORT in relative byte F1H located on track zero sector one.

DM F0 0CFE 0000 0504 0000 0000 0000 0000 0000
							(partial track 0, sector 1)

The above partial ZAP screen of track zero, sector one indicates a 12 will be output to port 254 during initialization.

******** ZAP 002 ******** 12/27/84 ******** SYSTEM (optional)

Disk I/O tries. MULTIDOS is distributed with the number of disk I/O tries set to 5. This is a good value. If a diskette starts to give you errors, BACKUP the file(s) immediately. Increasing the number of I/O tries may enable you to read the file; however, eventually it will fail. The number of I/O tries is in the lower nibble (bits 0 to 3) of relative byte F4H (maximum number of tries is 15). If you want to change the I/O tries, modify the byte in relative position F4H on track zero sector one.

******** ZAP 003 ******** 12/27/84 ******** SYSTEM (optional)

Head load delay. Whenever MULTIDOS selects a different drive, even if the motors are up to speed, a delay of about 15mS occurs before an attempt is made to read/write to the newly selected drive. The amount of delay is increased 3.756mS for each unit in relative byte F5H on track zero sector one.

******** ZAP 004 ******** 12/27/84 ******** Open/DOL (optional)
******** ZAP 004 updated 01/01/86 ********
******** ZAP 004 updated 11/30/90 ********
******** ZAP 004 DELETED 07/07/98 ********

Open/DOL error codes. The error code most application programs expect when an attempt is made to access a file, and the "file is not found", is 18H. This error can occur in three distinct circumstances. 1) The drivespec given does not contain the file, 2) the drivespec given is not available, or 3) the file was searched for and not found on all mounted drives. Error code 18H is correct for case 1, error code 08H is correct for case 2, and error code 1FH is correct for case 3. MULTIDOS can return the correct error code by zapping two bytes in Open/DOL. Please note, with this zap, some application programs might return "Program not found" if an access is made to a file without a drivespec.

File: Open/DOL, Relative sector: 4, relative byte: 83H

Change: 1818
 To: 081F

******** ZAP 005 ******** 12/27/84 ******** SYSTEM (optional)

Default value for SM0. If any of the high three bits in SM0 are set, you may have unusual filenames. However, keep in mind not all operating systems recognize the new syntax. Relative byte F7H on track zero sector one is loaded into SM0 during initialization. Please refer to the discussion of the bit definitions for SM0 in the Entry points for MULTIDOS section.

DM F0 0CFE 0000 0504 0000 0000 0000 0000 0000
							(partial track 0, sector 1)

******** ZAP 006 ******** 12/27/84 ******** ZAP/CMD (optional)

Default response for ZAP/CMD menu. ZAP/CMD's first sector in relative byte 80H, contains the menu default character. This is distributed with 43H, C, "Copy sectors". The value here is ZAP's default when you press <ENTER> at the "Choice" prompt. Zap 44H if you want the default to be "Disk sectors", 46H if you want the default to be "File sectors", etc. The new default does not go into effect until ZAP is initialized again.

******** ZAP 007 ******** 12/27/84 ******** BASIC/CMD, BBASIC/CMD (optional)

Default number and type of file buffer areas for SUPERBASIC. The first sector of BASIC/CMD and BBASIC/CMD in relative byte 84H contains the default number of file buffer areas allocated during SUPERBASIC initialization. Valid values are 00 through 0FH. And relative byte 85H determines the type of buffer areas opened during initialization. If this byte is nonzero then the required "V" for user defined record lengths during random I/O is not required upon initialization, e.g., BASIC 3V<ENTER> if the byte is zero, or BASIC<ENTER> if the byte is nonzero. The "V" buffer areas are 545 bytes each, and non"V" buffer areas are 289 bytes each.

******** ZAP 008 ******** 01/24/85 ******** BACKUP/CMD (optional)
******** ZAP 008 updated 01/01/86 ********
******** ZAP 008 updated 10/22/90 ********
******** ZAP 008 updated 06/15/99 ********

The automatic feature of verifying a diskette after all granules are duplicated onto the destination diskette can be modified to: (1) never verify, or (2) to verify only if the DOS verify is on.

File: BACKUP/CMD, Relative sector: 9, relative byte: E0H

NEVER REVERIFY 				PER LIBRARY COMMAND VERIFY

Change: 44AF 2F32								Change: 44AF 2F32
 To: 44AF AF32		 						 To: 4496 2F32

******** ZAP 009 ******** 02/06/85 ******** VisiCalc VC/CMD (interface)

VisiCalc print enable. VisiCalc uses the interrupt task processor to print. Changes to the way the interrupt task processor operates with MULTIDOS version 1.7 and later doesn't support VisiCalc printing. The zapped VisiCalc will only work with MULTIDOS.

File: VC/CMD, relative sector 75, relative byte 16H

Change: 289C
 To: EE9B

******** ZAP 010 ******** 02/11/85 ******** INFO (informational)
******** ZAP 010 updated 12/30/85 ********
******** ZAP 010 updated 03/29/89 ********

CAT/CMD dated 10/22/88 or later automatically turns SKIP on or off, and CONFIGs for side and/or volumes with or without the "N" parameter. NOTE: The "N" parameter was changed to "T" in June 1999.

This ZAP is for transmitting information on the release of Version 1.71. It is impossible to ZAP all of the modules involved in reading NEWDOS/80 diskettes with the GPL parameter not equal to 2. The original release of Version 1.7 will only read a NEWDOS/80 diskette with a GPL=2. SYSRES/SYS has been updated to handle extended directories on NEWDOS/80 version 2 diskettes. See DCT+01 bit 5 definition.

DCT+01: (NIL is indicated by having ALL bits set.)

BIT 0 Physical drive LSB.
BIT 1 Physical drive.
BIT 2 Physical drive MSB.
BIT 3 MEMDISK.
BIT 4 Set to one indicates HARD/MEMORY. A zero indicates floppy.
BIT 5 Locks DCT. (no automatic update to DCT+06 through DCT+08)
BIT 6 Set to one to indicate software write protect.
BIT 7 Set to zero to indicate drive in system.

For floppies, DCT+06 through DCT+08 are updated each time the DOS must invoke automatic data recognition. The default decimal values are:

										DCT+06 DCT+07 DCT+08 DCT+09
3½", 5¼" SS/SD 5 2 10 8
3½", 5¼" DS/SD 5 4 10 18
3½", 5¼" SS/DD 6 3 18 16
3½", 5¼" DS/DD 6 6 18 32

You can establish other values to read a special format pattern by placing the respective values in the DCT and set bit 5 of DCT+01.

EXAMPLE: NEWDOS/80 PDRIVE setting with SPT=36, GPL=8, and DDGA=6.

		DCT+00 = 100110xxB (xx is the stepping rate) 98H = 6mS
		DCT+02 = 02H
		DCT+06 = 05H ("...there are still 5 sectors per granule,...")
		DCT+07 = 08H (GPL)
		DCT+08 = 28H (sectors per LUMP)
		DCT+09 = 1CH (DDGA * 5 2, 5 = DCT+06, 2 = 1 GAT + 1 HIT)

The file CAT/CMD has been modified to set bit 5 of DCT+01. Bit 5 of DCT+01 will be reset if the new "N" or "L" parameter is specified (while reading a MULTIDOS diskette). In addition to the "N" and "L", CAT/CMD has a "W" parameter to write, onto a NEWDOS/80 diskette's GAT sector, the necessary two bytes in relative bytes 0CCH and 0CDH to ensure the entire NEWDOS/80 disk space can be used. NEWDOS/80 doesn't care that these two bytes are set to a nonzero value. If the "W" parameter is used to update these two bytes, the affected disk can function normally in a NEWDOS/80 environment. Use the "W" only on NEWDOS/80 diskettes!

June 1999 update: The "N" parameter has been changed to "T", the "W" parameter has been changed to "X", and the "L" parameter eliminated.

The files Allocate/DOL, COPY/CMD, and VFU/CMD has been modified to limit the tracks accessed if the bytes at 0CCH and 0CDH are zero. This enables MULTIDOS to write to a NEWDOS/80 diskette without trying to write to a nonexistent track. However, MULTIDOS probably will indicate a full diskette if these two bytes are zero.

The file CDIR/CMD will clear the entire directory, provided the diskette was accessed via CAT/CMD prior to CDIR.

The file FMAP/CMD will display the correct information, provided the diskette was accessed via CAT/CMD prior to FMAP.

The library command DIR (Library1/EXT), and Minidos will display correct NEWDOS/80 directory data, provided the diskette was accessed via CAT/CMD prior to these commands.

The file ZAP/CMD will not complain "Garbage in HIT sector." for extended NEWDOS/80 directories if the diskette was accessed via CAT/CMD prior to the "X" function in ZAP. In addition, ZAP can now display all files on a NEWDOS/80 disk, with a GPL greater than two.

To ensure correct reading of a NEWDOS/80 diskette, issue a CAT :d command prior to reading the NEWDOS/80 diskette. CONFIG (Library2/EXT) will indicate a locked DCT. Subsequent CATs to a different diskette in the drive that had the NEWDOS/80 diskette will automatically lock and/or unlock the DCT.

Of course, all of this depends on correct PDRIVE settings.

******** ZAP 011 ******** 02/17/86 ******** BACKUP, FORMAT, and ZAP/CMD (optional)

Faster disk I/O by using a different interleave with doubledensity diskettes. Interleave allows logical contiguous sectors of data on a given track to be mapped onto nonadjacent physical sectors. An interleave of two (singledensity) means that every second physical sector is transferred as the next contiguous logical sector of data. An interleave of three (doubledensity) means that every third physical sector is transferred as the next contiguous logical sector of data. An interleave of six (Model 3 TRSDOS®) means that every sixth physical sector is transferred as the next contiguous logical sector of data. This also means the number of sectors per track divided by the interleave is transferred in one revolution of the diskette. If the diskette is singledensity with an interleave of two and 10 sectors per track, then each revolution of the diskette transfers five sectors requiring two revolutions of the diskette to transfer one track of data. If the diskette is doubledensity with an interleave of three and 18 sectors per track, then each revolution of the diskette transfers six sectors requiring three revolutions of the diskette to transfer one track of data. If the diskette is Model 3 TRSDOS® with an interleave of six and 18 sectors per track, then each revolution of the diskette transfers three sectors requiring six revolutions of the diskette to transfer one track of data.

The time the system requires to transfer one sector of data is the primary factor in determining the interleave. If a read operation is in progress and the interleave is three, after a sector of data is read into the sector buffer, the sector buffer is processed while the read/write head is passing over the next two sectors. If the system cannot process the sector buffer during the twosector time available, then the system has to wait a full revolution before the next logical sector can be read from the diskette. For example, Model 3 TRSDOS® cannot process a sector buffer in a twosector time; therefore, Model 3 TRSDOS® uses an interleave of six. Without using a calculator, you can see why Model 3 TRSDOS® requires 1.2 seconds ─── 6 times 200mS (time required for one revolution of the diskette) ─── to read a full track of data.

An interleave of three was used with the introduction of DBLDOSTM because the Model I has a standard CPU speed of 1.77 MHz. The other DOS makers also used an interleave of three.

The interleave for doubledensity diskettes can be reduced to two because the Model 4/4P/4D has a standard CPU speed of 4 MHz. In fact, a CPU speed greater than 2.5 MHz can handle an interleave of two if the operating system is MULTIDOS. An interleave of two is 33 percent faster than a interleave of three ─── 600mS vs 400mS.

If you have a high speed modification, I recommend you ZAP a byte in BACKUP/CMD, FORMAT/CMD, and ZAP/CMD to incorporate an interleave of two for doubledensity diskettes. The interleave for singledensity diskettes remains at two. In all cases a value of zero is an interleave of three, and a nonzero value is an interleave of two.

File:	BACKUP/CMD, Relative sector: 0, relative byte: A0H
			FORMAT/CMD, Relative sector: 0, relative byte: B0H
			ZAP/CMD, Relative sector: 0, relative byte: 81H

MODEL I ZAPS
MODEL I ZAPS

Page 202
Page 201
******** ZAP 001 ******** 12/27/84 ******** SYSTEM (optional)
******** ZAP 001 updated 06/27/91 ********
******** ZAP 001 updated 11/03/99 ********

MULTIDOS sets bit 6 of 4210H and outputs a one to port 95 during initialization. The code to accomplish this is on track zero sector one from relative byte 72H through relative byte 7FH. Bytes 75H and 76H set a Model 4 to 4 MHz running in the Model III mode. If high speed is not desired, then zero bytes 75H and 76H. Bytes 7CH through 7FH sets the HOLMES board to high speed. If another byte/port combination is desired, then update the appropriate code into bytes 7CH through 7FH.

							(partial track 0, sector 1)
Cyl 70 1144 2110 42CB F6CB E67E D3EC 3E01 D35F .D!.B....~..>.._

	LD		HL,4210H
	SET		6,(HL)
	SET		4,(HL)

																	LD		A,1
																	OUT		(95),A

******** ZAP 002 ******** 12/27/84 ******** SYSTEM (optional)
******** ZAP 002 updated 12/30/85 ********

Disk I/O tries and side compare. MULTIDOS is distributed with the number of disk I/O tries set to 5. This is a good value. If a diskette starts to give you errors, BACKUP the file(s) immediately. Increasing the number of I/O tries may enable you to read the file; however, eventually it will fail. The number of I/O tries is in the lower nibble (bits 0 to 3) of relative byte F4H (maximum number of tries is 15). The higher nibble uses bit 7 to enable side compare for doublesided diskettes. If this bit is set, side compare is enabled. If this bit is reset, then side compare is disabled. MULTIDOS versions earlier than 2.00 did not have side compare enabled. If you want to change the I/O tries and/or side compare, modify the byte in relative position F4H on track zero sector zero.

DM F0 0000 0000 8504 0000 0000 0000 0000 0000
							(partial track 0, sector 0)

******** ZAP 003 ******** 12/27/84 ******** SYSTEM (optional)

Head load delay. Whenever MULTIDOS selects a different drive, even if the motors are up to speed, a delay of about 15mS occurs before an attempt is made to read/write to the newly selected drive. The amount of delay is 3.79mS for each unit in relative byte F5H on track zero sector zero.

DM F0 0000 0000 8504 0000 0000 0000 0000 0000
							(partial track 0, sector 0)

******** ZAP 004 ******** 12/27/84 ******** Open/DOL (optional)
******** ZAP 004 updated 01/01/86 ********
******** ZAP 004 updated 11/30/90 ********
******** ZAP 004 DELETED 07/07/98 ********

Open/DOL error codes. The error code most application programs expect when an attempt is made to access a file, and the "file is not found", is 18H. This error can occur in three distinct circumstances. 1) The drivespec given does not contain the file, 2) the drivespec given is not available, or 3) the file was searched for and not found on all mounted drives. Error code 18H is correct for case 1, error code 08H is correct for case 2, and error code 1FH is correct for case 3. MULTIDOS can return the correct error code by zapping two bytes in Open/DOL. Please note, with this zap, some application programs might return "Program not found" if an access is made to a file without a drivespec.

File: Open/DOL, Relative sector: 4, relative byte: 83H

Change: 1818
 To: 081F

******** ZAP 005 ******** 12/27/84 ******** SYSTEM (optional)

Default value for SM0. If any of the high three bits in SM0 are set, you may have unusual filenames. However, keep in mind not all operating systems recognize the new syntax. Relative byte F7H on track zero sector zero is loaded into SM0 during initialization. Please refer to the discussion of the bit definitions for SM0 in the Entry points for MULTIDOS section.

DM F0 0000 0000 8504 0000 0000 0000 0000 0000
							(partial track 0, sector 0)

******** ZAP 006 ******** 12/27/84 ******** ZAP/CMD (optional)

Default response for ZAP/CMD menu. ZAP/CMD's first sector in relative byte 80H, contains the menu default character. This is distributed with 43H, C, "Copy sectors". The value here is ZAP's default when you press <ENTER> at the "Choice" prompt. The new default does not go into effect until ZAP is initialized again.

******** ZAP 007 ******** 12/27/84 ******** BASIC/CMD, BBASIC/CMD (optional)

Default number and type of file buffer areas for SUPERBASIC. The first sector of BASIC/CMD and BBASIC/CMD in relative byte 84H contains the default number of file buffer areas allocated during SUPERBASIC initialization. Valid values are 00 through 0FH. And relative byte 85H determines the type of buffer areas opened during initialization. If this byte is nonzero then the required "V" for user defined record lengths during random I/O is not required upon initialization, e.g., BASIC 3V<ENTER> if the byte is zero, or BASIC<ENTER> if the byte is nonzero. The "V" buffer areas are 545 bytes each, and non"V" buffer areas are 289 bytes each.

******** ZAP 008 ******** 01/24/85 ******** BACKUP/CMD (optional)
******** ZAP 008 updated 01/01/86 ********
******** ZAP 008 updated 10/22/90 ********
******** ZAP 008 updated 06/15/99 ********

The automatic feature of verifying a diskette after all granules are duplicated onto the destination diskette can be modified to: (1) never verify, or (2) to verify only if the DOS verify is on.

File: BACKUP/CMD, Relative sector: 9, relative byte: DEH

NEVER REVERIFY 				PER LIBRARY COMMAND VERIFY

Change: 44AF 2F32								Change: 44AF 2F32
 To: 44AF AF32		 						 To: 4496 2F32

******** ZAP 010 ******** 02/11/85 ******** INFO (informational)
******** ZAP 010 updated 12/30/85 ********
******** ZAP 010 updated 03/29/89 ********

CAT/CMD dated 10/22/88 or later automatically turns SKIP on or off, and CONFIGs for side and/or volumes with or without the "N" parameter. NOTE: The "N" parameter was changed to "T" in June 1999.

This ZAP is for transmitting information on the release of Version 1.71. It is impossible to ZAP all of the modules involved in reading NEWDOS/80 diskettes with the GPL parameter not equal to 2. The original release of Version 1.7 will only read a NEWDOS/80 diskette with a GPL=2. SYSRES/SYS has been updated to handle extended directories on NEWDOS/80 version 2 diskettes. See DCT+01 bit 5 definition.

DCT+01: (NIL is indicated by having ALL bits set.)

BIT 0 Physical drive LSB.
BIT 1 Physical drive.
BIT 2 Physical drive MSB.
BIT 3 MEMDISK.
BIT 4 Set to one indicates HARD/MEMORY. A zero indicates floppy.
BIT 5 Locks DCT. (no automatic update to DCT+06 through DCT+08)
BIT 6 Set to one to indicate software write protect.
BIT 7 Set to zero to indicate drive in system.

For floppies, DCT+06 through DCT+08 are updated each time the DOS must invoke automatic data recognition. The default decimal values are:

										DCT+06 DCT+07 DCT+08 DCT+09
3½", 5¼" SD/SS 5 2 10 8
3½", 5¼" SD/DS 5 4 10 18
3½", 5¼" DD/SS 6 3 18 16
3½", 5¼" DD/DS 6 6 18 32

You can establish other values to read a special format pattern by placing the respective values in the DCT and set bit 5 of DCT+01.

EXAMPLE: NEWDOS/80 PDRIVE setting with SPT=36, GPL=8, and DDGA=6.

		DCT+00 = 100110xxB (xx is the stepping rate) 98H = 6mS
		DCT+02 = 02H
		DCT+06 = 05H ("...there are still 5 sectors per granule,...")
		DCT+07 = 08H (GPL)
		DCT+08 = 28H (sectors per LUMP)
		DCT+09 = 1CH (DDGA * 5 2, 5 = DCT+06, 2 = 1 GAT + 1 HIT)

The file CAT/CMD has been modified to set bit 5 of DCT+01. Bit 5 of DCT+01 will be reset if the new "N" or "L" parameter is specified (while reading a MULTIDOS diskette). In addition to the "N" and "L", CAT/CMD has a "W" parameter to write, onto a NEWDOS/80 diskette's GAT sector, the necessary two bytes in relative bytes 0CCH and 0CDH to ensure the entire NEWDOS/80 disk space can be used. NEWDOS/80 doesn't care that these two bytes are set to a nonzero value. If the "W" parameter is used to update these two bytes, the affected disk can function normally in a NEWDOS/80 environment. Use the "W" only on NEWDOS/80 diskettes!

June 1999 update: The "N" parameter has been changed to "T", the "W" parameter has been changed to "X", and the "L" parameter eliminated.

The files Allocate/DOL, COPY/CMD, and VFU/CMD has been modified to limit the tracks accessed if the bytes at 0CCH and 0CDH are zero. This enables MULTIDOS to write to a NEWDOS/80 diskette without trying to write to a nonexistent track. However, MULTIDOS probably will indicate a full diskette if these two bytes are zero.

The file CDIR/CMD will clear the entire directory, provided the diskette was accessed via CAT/CMD prior to CDIR.

The file FMAP/CMD will display the correct information, provided the diskette was accessed via CAT/CMD prior to FMAP.

The library command DIR (Library1/EXT), and Minidos will display correct NEWDOS/80 directory data, provided the diskette was accessed via CAT/CMD prior to these commands.

The file ZAP/CMD will not complain "Garbage in HIT sector." for extended NEWDOS/80 directories if the diskette was accessed via CAT/CMD prior to the "X" function in ZAP. In addition, ZAP can now display all files on a NEWDOS/80 disk, with a GPL greater than two.

To ensure correct reading of a NEWDOS/80 diskette, issue a CAT :d command prior to reading the NEWDOS/80 diskette. CONFIG (Library2/EXT) will indicate a locked DCT. Subsequent CATs to a different diskette in the drive that had the NEWDOS/80 diskette will automatically lock and/or unlock the DCT.

Of course, all of this depends on correct PDRIVE settings.

******** ZAP 011 ******** 02/17/86 ******** BACKUP, FORMAT, and ZAP/CMD (optional)

Faster disk I/O by using a different interleave with doubledensity diskettes. Interleave allows logical contiguous sectors of data on a given track to be mapped onto nonadjacent physical sectors. An interleave of two (singledensity) means that every second physical sector is transferred as the next contiguous logical sector of data. An interleave of three (doubledensity) means that every third physical sector is transferred as the next contiguous logical sector of data. An interleave of six (Model 3 TRSDOS®) means that every sixth physical sector is transferred as the next contiguous logical sector of data. This also means the number of sectors per track divided by the interleave is transferred in one revolution of the diskette. If the diskette is singledensity with an interleave of two and 10 sectors per track, then each revolution of the diskette transfers five sectors requiring two revolutions of the diskette to transfer one track of data. If the diskette is doubledensity with an interleave of three and 18 sectors per track, then each revolution of the diskette transfers six sectors requiring three revolutions of the diskette to transfer one track of data. If the diskette is Model 3 TRSDOS® with an interleave of six and 18 sectors per track, then each revolution of the diskette transfers three sectors requiring six revolutions of the diskette to transfer one track of data.

The time the system requires to transfer one sector of data is the primary factor in determining the interleave. If a read operation is in progress and the interleave is three, after a sector of data is read into the sector buffer, the sector buffer is processed while the read/write head is passing over the next two sectors. If the system cannot process the sector buffer during the twosector time available, then the system has to wait a full revolution before the next logical sector can be read from the diskette. For example, Model 3 TRSDOS® cannot process a sector buffer in a twosector time; therefore, Model 3 TRSDOS® uses an interleave of six. Without using a calculator, you can see why Model 3 TRSDOS® requires 1.2 seconds ─── 6 times 200mS (time required for one revolution of the diskette) ─── to read a full track of data.

An interleave of three was used with the introduction of DBLDOSTM because the Model I has a standard CPU speed of 1.77 MHz. The other DOS makers also used an interleave of three.

The interleave for doubledensity diskettes can be reduced to two because the Model 4/4P/4D has a standard CPU speed of 4 MHz. In fact, a CPU speed greater than 2.5 MHz can handle an interleave of two if the operating system is MULTIDOS. An interleave of two is 33 percent faster than a interleave of three ─── 600mS vs 400mS.

If you have a high speed modification, I recommend you ZAP a byte in BACKUP/CMD, FORMAT/CMD, and ZAP/CMD to incorporate an interleave of two for doubledensity diskettes. The interleave for singledensity diskettes remains at two. In all cases a value of zero is an interleave of three, and a nonzero value is an interleave of two.

File:	BACKUP/CMD, Relative sector: 0, relative byte: A0H
			FORMAT/CMD, Relative sector: 0, relative byte: B0H
			ZAP/CMD, Relative sector: 0, relative byte: 81H

MODEL III ZAPS
MODEL III ZAPS

******** ZAP 001 ******** 02/27/85 ******** SYSTEM (optional)
******** ZAP 001 updated 12/30/85 ********
******** ZAP 001 updated 07/05/88 ********
******** ZAP 001 updated 05/04/91 ********

Information on the initialization configuration for MULTIDOS can be found on track zero sector zero.

		Hex 00 0000 1100 0000 0000 0000 0000 0000 0000
			 10 0000 0000 0001 FE45 0000 208F 0007 CC01E..
			 20 003C 0000 0006 AE47 3C00 5000 06C3 0044 .<.....G<......D

			 E0 0000 0000 0000 0000 0000 0000 0000 0000
		DM F0 00FF 0100 8503 C800 0000 0000 0000 0000
							(partial track 0, sector 0)

Relative byte F0H EPSONtm graphics conversion.
The LIBRARY command KEYBRD modifies this byte. If this byte is nonzero, then the FORMS routine converts characters in the range from 80H through 0BFH to the required values of 0A0H through 0DFH for the earlier EPSONtm printers to replicate TRS80® screen graphic characters. EPSON printers equipped with GRAFTRAX 80tm can still produce TRS80® graphics. However, the GRAFTRAX PLUStm modification disables the reproduction of TRS80® graphics.

Relative byte F1H Video Width.
This byte is modified by the library command KEYBRD. If this byte is nonzero, then powerup is in the 80 column mode.

Relative byte F2H TypeAhead.
The TypeAhead feature is activated on powerup if this byte has a ZERO value. The TYPE library command does not modify this byte.

Relative byte F3H SPOOLER.
The SPOOLER is activated on powerup if this byte is nonzero. The file SPOOL/CMD does not modify this byte.

Relative byte F4H Disk I/O tries and side compare.
MULTIDOS is distributed with the number of disk I/O tries set to 5. This is a good value. If a diskette starts to give you errors, BACKUP the file(s) immediately. Increasing the number of I/O tries may enable you to read the file; however, eventually it will fail. The number of I/O tries is in the lower nibble (bits 0 to 3), yielding the maximum number of tries to 15. The higher nibble uses bit 7 to enable side compare for doublesided diskettes. If this bit is set, side compare is enabled. If this bit is reset, then side compare is disabled. MULTIDOS versions earlier than 2.00 did not have side compare enabled.

Relative byte F5H Head load delay.
Whenever MULTIDOS selects a different drive, even if the motors are up to speed, a delay of about 15mS occurs before an attempt is made to read/write to the newly selected drive. The amount of delay is increased 4.096mS for each unit over the distributed value of 3.
Model 4 ZAPS
Model 4 ZAPS

Page 210
Page 209
Relative byte F6H SPOOLER delay.
This byte controls the amount of time the SPOOLER waits after each character is sent to the printer before the SPOOLER attempts to send another character. The purpose of this delay is to keep the printer running at full speed when the SPOOLER is active. The distributed value of C8H (the optimum value for an EPSON MX80F/T printer) is placed into 48F8H (subject to change) during system initialization. You can modify this value, via POKEs or DEBUG while the SPOOLER is outputting to your printer, to obtain an optimum value. An optimum value is a value that the printer runs at approximately full speed and the system does not seem sluggish. If you select a value too large the printer runs at normal speed; however, you will encounter delays in keyboard responses and a hesitant display.

Relative byte F7H Default value for SM0.
If any of the high three bits in SM0 are set, you may have unusual filenames. However, keep in mind not all operating systems recognize the new syntax. Please refer to the discussion of the bit definitions for SM0 in your manual.

******** ZAP 002 ******** 02/27/85 ******** Open/DOL (optional)
******** ZAP 002 updated 11/30/90 ********
******** ZAP 002 updated 08/29/94 ********
******** ZAP 002 updated 07/07/95 ********
******** ZAP 002 updated 09/01/96 ********

Open/DOL error codes. The error code most application programs expect when an attempt is made to access a file, and the "file is not found", is 18H. This error can occur in three distinct circumstances. 1) The drivespec given does not contain the file, 2) the drivespec given is not available, or 3) the file was searched for and not found on all mounted drives. Error code 18H is correct for case 1, error code 08H is correct for case 2, and error code 1FH is correct for case 3. MULTIDOS can return the correct error code by ZAPping two bytes in Open/DOL. Please note, with this zap, some application programs might return "Program not found" if an access is made to a file without a drivespec. Your diskette has this ZAP applied.

File: Open/DOL, Relative sector: 4, relative byte: 58H

Change: C918 1802
 To: C908 1F02

******** ZAP 003 ******** 02/27/85 ******** ZAP/CMD (optional)

Default response for ZAP/CMD menu. ZAP/CMD's first sector in relative byte 80H, contains the menu default character. This is distributed with 43H, C, "Copy sectors". The value here is ZAP's default when you press <ENTER> at the "Choice" prompt. Zap 44H if you want the default to be "Disk sectors", 46H if you want the default to be "File sectors", etc. The new default does not go into effect until ZAP is initialized again.

******** ZAP 004 ******** 02/27/85 ******** BASIC/CMD (optional)

Default number of file buffer areas for SUPERBASIC. BASIC/CMD's first sector (relative sector 0) in relative byte 80H contains the default number of file buffer areas allocated during SUPERBASIC initialization. Valid values are 0 to 0FH. Relative byte 82H determines the type of buffer areas opened during initialization. If this byte is nonzero then the required "V" for user defined record lengths during random I/O is not required upon initialization, e.g., BASIC 3V<ENTER> if the byte is zero, or BASIC<ENTER> if the byte is nonzero. The "V" buffer areas are 545 bytes each, and non"V" buffer areas are 289 bytes each.

******** ZAP 005 ******** 02/27/85 ******** BASIC/CMD (optional)

Default variable types for SUPERBASIC. Relative byte 81H in BASIC/CMD's first sector contain SUPERBASIC's internal code for the type of variable upon initialization and CLEAR.

DESIRED VARIABLE TYPE								APPROPRIATE CODE
Integer precision 02
Strings 03
Single precision 04
Double precision 08

The initialization code has the necessary checks to validate a correct code. If an incorrect value is encountered, SUPERBASIC uses the value of 04.

******** ZAP 006 ******** 02/27/85 ******** BACKUP/CMD (optional)
******** ZAP 006 updated 12/30/85 ********
******** ZAP 006 updated 10/22/90 ********
******** ZAP 006 updated 08/26/94 ********
******** ZAP 006 updated 07/07/95 ********
******** ZAP 006 updated 06/15/99 ********

The automatic feature of verifying a diskette after all granules are duplicated onto the destination diskette can be modified to: (1) never verify, or (2) to verify only if the DOS verify is on.

File: BACKUP/CMD, Relative sector: 9, relative byte: E3H

NEVER REVERIFY 				PER LIBRARY COMMAND VERIFY

Change: 44AF 2F32								Change: 44AF 2F32
 To: 44AF AF32		 						 To: 4496 2F32

******** ZAP 007 ******** 02/27/85 ******** SYSTEM (optional)
******** ZAP 007 DELETED 12/30/85 ********

This ZAP dealt with the one second delay for reads. This feature has been eliminated.

******** ZAP 008 ******** 02/27/85 ******** INFO (information)
******** ZAP 008 updated 12/30/85 ********

This ZAP is for transmitting information on the release of Version 1.71. It is impossible to ZAP all of the modules involved in reading NEWDOS/80 diskettes with the GPL parameter not equal to 2. The original release of Version 1.7 will only read a NEWDOS/80 diskette, with a GPL=2.

SYSRES/SYS has been updated to handle extended directories on NEWDOS/80 version 2 diskettes. See DCT+01 bit 5 definition.

DCT+01: (NIL is indicated by having ALL bits set.)

BIT 0 Physical drive LSB.
BIT 1 Physical drive.
BIT 2 Physical drive MSB.
BIT 3 MEMDISK.
BIT 4 Set to one indicates HARD/MEMORY. A zero indicates floppy.
BIT 5 Locks DCT. (no automatic update to DCT+06 through DCT+08)
BIT 6 Set to one to indicate software write protect.
BIT 7 Set to zero to indicate drive in system.

For floppies, DCT+06 through DCT+08 are updated each time the DOS must invoke automatic data recognition. The default values are:

										DCT+06 DCT+07 DCT+08 DCT+09
3½", 5¼" SD/SS 5 2 10 8
3½", 5¼" SD/DS 5 4 10 18
3½", 5¼" DD/SS 6 3 18 16
3½", 5¼" DD/DS 6 6 18 32

You can establish other values to read a special format pattern by placing the respective values in the DCT and set bit 5 of DCT+01.

EXAMPLE: NEWDOS/80 PDRIVE setting with SPT=36, GPL=8, and DDGA=6.

		DCT+00 = 100110xxB (xx is the stepping rate) 98H = 6mS
		DCT+02 = 02H
		DCT+06 = 05H ("...there are still 5 sectors per granule,...")
		DCT+07 = 08H (GPL)
		DCT+08 = 28H (sectors per LUMP)
		DCT+09 = 1CH (DDGA * 5 2, 5 = DCT+06, 2 = 1 GAT + 1 HIT)

The file CAT/CMD has been modified to set bit 5 of DCT+01. Bit 5 of DCT+01 will be reset if the new "N" or "L" parameter is specified (while reading a MULTIDOS diskette). In addition to the "N" and "L", CAT/CMD has a "W" parameter to write, onto a NEWDOS/80 diskette's GAT sector, the necessary two bytes in relative bytes 0CCH and 0CDH to ensure the entire NEWDOS/80 disk space can be used. NEWDOS/80 doesn't care that these two bytes are set to a nonzero value. If the "W" parameter is used to update these two bytes, the affected disk can function normally in a NEWDOS/80 environment. Use the "W" only on NEWDOS/80 diskettes!

The files Allocate/DOL, COPY/CMD, and VFU/CMD has been modified to limit the tracks accessed if the bytes at 0CCH and 0CDH are zero. This enables MULTIDOS to write to a NEWDOS/80 diskette without trying to write to a nonexistent track. However, MULTIDOS probably will indicate a full diskette if these two bytes are zero.

The file CDIR/CMD will clear the entire directory, provided the diskette was accessed via CAT/CMD prior to CDIR.

The file FMAP/CMD will display the correct information, provided the diskette was accessed via CAT/CMD prior to FMAP.

The library command DIR (Library1/EXT), and Minidos will display correct NEWDOS/80 directory data, provided the diskette was accessed via CAT/CMD prior to these commands.

The file ZAP/CMD will not complain "Garbage in HIT sector." for extended NEWDOS/80 directories if the diskette was accessed via CAT/CMD prior to the "X" function in ZAP. In addition, ZAP can now display all files on a NEWDOS/80 disk, with a GPL greater than two.

To ensure correct reading of a NEWDOS/80 diskette, issue a CAT :d command prior to reading the NEWDOS/80 diskette. CONFIG (Library2/EXT) will indicate a locked DCT and can unlock the DCT with a CONFIG :d (N) followed by a CONFIG :d (P=p). This is an additional method of unlocking the DCT other than CAT (N).

Of course, all of this depends on correct PDRIVE settings.

******** ZAP 009 ******** 06/02/85 ******** UltraTerm (interface)

Modifications for UltraTerm to work with Model 4 MULTIDOS. The first two ZAPS will not inhibit UltraTerm from working with other DOSs on the Model I, Model III or Model 4 operating in the Model III mode.

File sector 0, relative byte 3DH

Change: 3A 2501 FE49 20
	 To: 3A 5500 FE01 28

File sector 1, relative byte CDH

Change: 3A 2501 FE49 20
	 To: 3A 5500 FE01 28

This last ZAP will make UltraTerm operate only with Model 4 MULTIDOS. However, I have decided to incorporate a change into the resident DOS to provide a vector to the CLS routine from the address 01C9H. This ZAP is not necessary for release 2.00 or later. The screen can be cleared with either XOR A followed by RST 0 or CALL 01C9H for MULTIDOS version 2.00 or later.

File sector 17, relative byte 38H

Change: CDC9 01
 To: AFC7 00

******** ZAP 010 ******** 06/02/85 ******** STERM/CMD (interface)

Modifications for STERM/CMD to work with Model 4 MULTIDOS. The following three ZAPS will not inhibit STERM/CMD from working with other DOSs on the Model I, Model III, or Model 4 operating in the Model III mode. The last ZAP overcomes three ROM calls starting at 61F7H.

File sector 1, relative byte C6H

Change: 3A1B 02FE 7E20
 To: 3A55 00FE 0128

File sector 11, relative byte 76H

Change: 3A1B 02FE 7E28
 To: 3A55 00FE 0120

File sector 17, relative byte AAH

Change: 0002 02A6 57
 To: 0001 3200 4110
 27E8 0364 000A 0001 00E5 0105 0521 0041
 5E23 5623 E33E 2FB7 3CED 5230 FB19 E30D
 2804 FE30 2805 CD33 000E 0110 E3E1 C901
 05F7 61C3 0A41 0202 A657

******** ZAP 011 ******** 06/09/85 ******** INFO (information)
************* UPDATE ZAP 008 *************
******** ZAP 011 updated 03/29/89 ********

The file CAT/CMD has been modified to automatically set bit 5 of DCT+01, eliminating the "L" and "U" parameters. CAT/CMD will automatically lock or unlock the DCT as appropriate. In addition, an "N" parameter is added to automatically turn SKIP on or off, and CONFIG for side and/or volume. CAT/CMD now automatically turns SKIP on or off, and CONFIGs for side and/or volume with or without the "N" parameter ── version 10/22/88 or later. NOTE: The "N" parameter was changed to "T" in June 1999.

******** ZAP 012 ******** 07/04/85 ******** (mandatory)
******** ZAP 012 DELETED 01/01/86 ********

This ZAP dealt with booting a doublesided singlevolume system diskette.

******** ZAP 013 ******** 09/17/85 ******** VC/CMD (interface)

VisiCalc was written to use the address at 37E8H for printer status checking. This will work fine on a Model 4 running in the Model III mode. However, Model 4 MULTIDOS only uses the F8H port to interface with the printer. Therefore, we need to ZAP VisiCalc to work with Model 4 MULTIDOS. The nice thing about these ZAPs is they do not disable VisiCalc from working in the Model III mode.

Version VC150Y0T83

Relative sector: 83, Relative byte: 9CH

Change:	 C9F5 C5D5
				E5CD 8D02 280A CD2D A4E1 D1C1 F137 1808
				CD35 A4E1 D1C1 F1B7
 To: C9C5 D5E5
				F53A 4038 E604 2809 CD2D A4F1 37E1 D1C1
				C9CD 35A4 F1B7 18F5

Relative sector: 84, Relative byte: CCH

Change: 3203 42CD
	 To: 0000 00CD

Relative sector: 84, Relative byte: 26H

Change: 3203 42CD 35A4 3AE8 37E6
	 To: 0000 00CD 35A4 DBF8 00E6

Version VC160Y0T83

Relative sector: 83, Relative byte: BAH

Change: C9F5 C5D5 E5CD
				8D02 280A CD4B A4E1 D1C1 F137 1808 CD53
				A4E1 D1C1 F1B7
 To: C9C5 D5E5 F53A
				4038 E604 2809 CD4B A4F1 37E1 D1C1 C9CD
				53A4 F1B7 18F5

Relative sector: 84, Relative byte: F0H

Change: 3203 42CD
	 To: 0000 00CD

Relative sector: 85, Relative byte: 46H

Change: C932 0342 CD53 A43A E837
	 To: C900 0000 CD53 A4DB F800

******** ZAP 014 ******** 02/17/86 ******** BACKUP, FORMAT, and ZAP/CMD (optional)

Faster disk I/O by using a different interleave with doubledensity diskettes. Interleave allows logical contiguous sectors of data on a given track to be mapped onto nonadjacent physical sectors. An interleave of two (singledensity) means that every second physical sector is transferred as the next contiguous logical sector of data. An interleave of three (doubledensity) means that every third physical sector is transferred as the next contiguous logical sector of data. An interleave of six (Model 3 TRSDOS®) means that every sixth physical sector is transferred as the next contiguous logical sector of data. This also means the number of sectors per track divided by the interleave is transferred in one revolution of the diskette. If the diskette is singledensity with an interleave of two and 10 sectors per track, then each revolution of the diskette transfers five sectors requiring two revolutions of the diskette to transfer one track of data. If the diskette is doubledensity with an interleave of three and 18 sectors per track, then each revolution of the diskette transfers six sectors requiring three revolutions of the diskette to transfer one track of data. If the diskette is Model 3 TRSDOS® with an interleave of six and 18 sectors per track, then each revolution of the diskette transfers three sectors requiring six revolutions of the diskette to transfer one track of data.

The time the system requires to transfer one sector of data is the primary factor in determining the interleave. If a read operation is in progress and the interleave is three, after a sector of data is read into the sector buffer, the sector buffer is processed while the read/write head is passing over the next two sectors. If the system cannot process the sector buffer during the twosector time available, then the system has to wait a full revolution before the next logical sector can be read from the diskette. For example, Model 3 TRSDOS® cannot process a sector buffer in a twosector time; therefore, Model 3 TRSDOS® uses an interleave of six. Without using a calculator, you can see why Model 3 TRSDOS® requires 1.2 seconds ─── 6 times 200mS (time required for one revolution of the diskette) ─── to read a full track of data.

An interleave of three was used with the introduction of DBLDOSTM because the Model I has a standard CPU speed of 1.77 MHz. The other DOS makers also used an interleave of three.

The interleave for doubledensity diskettes can be reduced to two because the Model 4/4P/4D has a standard CPU speed of 4 MHz. In fact, a CPU speed greater than 2.5 MHz can handle an interleave of two if the operating system is MULTIDOS. An interleave of two is 33 percent faster than a interleave of three ─── 600mS vs 400mS.

You can ZAP a byte in BACKUP/CMD, FORMAT/CMD, and ZAP/CMD to incorporate an interleave of two for doubledensity diskettes. The interleave for singledensity diskettes remains at two. In all cases a value of zero is an interleave of three, and a nonzero value is an interleave of two.

File:	BACKUP/CMD, Relative sector: 0, relative byte: A0H
			FORMAT/CMD, Relative sector: 0, relative byte: B0H
			ZAP/CMD, Relative sector: 0, relative byte: 81H

******** ZAP 015 ******** 06/22/86 ******** BASIC/CMD (mandatory)
******** ZAP 015 DELETED 03/29/89 ********

Only apply this mandatory ZAP, if BASIC/CMD is dated prior to the ZAP date.

Fix for PRINT@
		Relative File Sector 27d or 1BH

		Relative byte 7EH
		Change: 17
		 To: 1A

		Relative byte 94H
		Change: 181F CD46 1AE5 3A04 0021 80F8
							E610 2003 2100 FC19 DA8B 1B21 003C 19CD

		 To: E1CF 2CBF C9CD 461A EB3A 0400
							CD51 4445 4F7C B7C2 8B1B EBCD 831A 18D8

******** ZAP 016 ******** 06/22/86 ******** BASIC/CMD (mandatory)
******** ZAP 016 DELETED 03/29/89 ********

Only apply this mandatory ZAP, if BASIC/CMD is dated prior to the ZAP date.

Fix for LINEINPUT# (LINEINPUT sequential disk file)
		Relative File Sector 6, Relative byte F4H

		Change: 4220
		 To: 7A28

******** ZAP 017 ******** 06/22/86 ******** BASIC/CMD (mandatory)
******** ZAP 017 DELETED 03/29/89 ********

Only apply this mandatory ZAP, if your file is dated prior to the ZAP date.

Fix for TAN
		Relative File Sector 27d or 1BH, Relative Byte 3AH

		Change: 23
		 To: 22

		Relative File Sector 44d or 2CH, Relative byte 5BH

		Change: 17 30FB 10F9
						 E6FE 0F12 130D 28B9 7E23 0730 F5E1 18C8
						 CD08 15CD 7858 F1D1 CD09 15F5 C1

		 To: CB 2730 FA10
						 F80F 1213 0D28 BA7E 2307 30F5 E118 C9CD
						 0815 CD78 58F1 D1CD 0915 F5C1 EB

******** ZAP 018 ******** 05/04/91 ******** SYSRES/SYS (optional)

This ZAP enables MULTIDOS to detect a floppy diskette when the Z80® is operating above 4 MHz. You will need this if you are getting "Drive not available" error messages when a floppy is mounted properly in a particular floppy disk drive.

File: SYSRES/SYS

MULTIDOS 2.1
 Relative file sector 7, relative byte 67H

 Change: 36
 To: 6C

The 6C value enables MULTIDOS to work with the Z80® operating at 8 MHz.

MULTIDOS 2.11 or later has this ZAP applied in another location.

******** ZAP 019 ******** 12/27/93 ******** PCOPY/CMD (optional)

In PCOPY/CMD's first sector (relative sector 0) you can see "filename#01". This is the skeleton for storage of the filename and default extension. You can change the first character of the extension (relative byte 8CH) to:

 ! " # $ % & < > ? @

and execute PCOPY as documented. If you would like to have a lower case letter or graphic character, then ZAP relative byte 8FH to a nonzero value.

File sector 0, relative byte 8FH

Change: 3100
 To: 3101

******** ZAP 020 ******** 07/01/95 ******** Help/EXT (mandatory)
******** ZAP 020 DELETED 06/03/99 ********

The resetting of SM1 bit 4, should be exclusive to BASIC. This oversight became evident when I modified BASIC to complete a DO file when executed via CMD"DO file". This is an obscure problem, and the consecution required to manifest the problem is a DO file executed from BASIC with a DIR command (sets SM1 bit 4) followed by a HELP command. e.g., CMD"DO CRASH" and the file CRASH/IDO has DIR<ENTER> HELP<ENTER>.

File sector 0, relative byte 89H

Change: 31C1
 To: 31D1

******** ZAP 021 ******** 07/01/95 ******** VFU/CMD (optional)

When selecting file with VFU, a plus sign is used to indicate a file is selected. This character can be changed to any displayable character, including special characters.

File sector 0, relative byte 80H

Change: 2B
 To: any displayable character (21 through FF)

******** ZAP 022 ******** 07/01/95 ******** VFU/CMD (optional)

When VFU is copying or moving a file, VFU opens the source file (to get date, time, and size), then opens the destination file (to get date, time, and size), then reads the source file, then writes to the destination file. While VFU is going through these steps, various characters appear in front of the filespecs. You can modify these characters as follows:

File sector 0, relative byte 81H open source

Change: 2B
 To: any displayable character (21 through FF)

File sector 0, relative byte 82H open destination

Change: 23
 To: any displayable character (21 through FF)

File sector 0, relative byte 83H read source

Change: 24
 To: any displayable character (21 through FF)

File sector 0, relative byte 84H write to destination

Change: 2A
 To: any displayable character (21 through FF)

As an initial test, try these four values: 81, 82, 84, and 88.

******** ZAP 023 ******** 07/10/95 ******** BACKUP, FORMAT, and ZAP/CMD (optional)

Faster doubledensity floppy disk I/O by track to track sector skewing. MULTIDOS has always used sector skewing (set at five) to enable faster disk I/O since its inception. The five was set to handle slower drives with a track to track access speed greater than 20mS. Now that all newer disk drives can handle a track to track access speed of 6mS (limited by the Floppy Disk Controller [FDC] chip), I felt compelled to exploit this by decreasing the skew from five to a value compatible with the track to track stepping rate.

You can ZAP a byte in BACKUP/CMD, FORMAT/CMD, and ZAP/CMD to incorporate the faster skew for doubledensity diskettes. The sector skew for singledensity diskettes remains at three. In all cases a value of zero is a skew of five, and a nonzero value uses the DCT track to track stepping rate. i.e., 30mS uses a skew of 5, 20mS uses a skew of 4, 12mS uses a skew of 3, and 6mS uses a skew of 2.

File:	BACKUP/CMD, Relative sector: 0, relative byte: A1H
			FORMAT/CMD, Relative sector: 0, relative byte: B1H
			ZAP/CMD, Relative sector: 0, relative byte: 82H

******** ZAP 024 ******** 07/10/95 ******** BACKUP, FORMAT, and ZAP/CMD (optional)

Formatting diskettes for use on IBM and clones require an index mark (MULTIDOS starting using index marks in 1983 because the LOBO MAX80 required index marks). And I have found some TRS80® to PC utilities have had difficulty in reading TRS80® diskettes created by MULTIDOS. What I suspected the problem to be is the length of the preindex, GAP 0 (the length of GAP 0 used by MULTIDOS is zero). MULTIDOS can be modified to increase the preindex, GAP 0, from zero bytes to 32 bytes (note: the standard IBM format has 92 preindex bytes, which never worked on the TRS80®). The value of 32 was derived by starting from 92 and reducing the count until it worked then, for insurance, halving the result. MULTIDOS 3.00 had this set at 32, and one customer reported a problem. Therefore, in MULTIDOS 3.10, the preindex is set to zero. For those who want to try 32, change the following bytes to a nonzero value.

File:	BACKUP/CMD, Relative sector: 0, relative byte: A2H
			FORMAT/CMD, Relative sector: 0, relative byte: B2H
			ZAP/CMD, Relative sector: 0, relative byte: 83H

******** ZAP 025 ******** 1/27/98 ******** EMURES/SYS (optional)
******** ZAP 025 DELETED 3/26/99 ********

The key repeat timing must be adjusted for fast PC’s, because PC’s emulate a TRS80® at approximately 2/15th the CPU speed. Timing changes can be made only with EMURES/SYS dated 01/23/98 or later.

File sector 7, relative byte 60H – repeat rate
Change: 08 to a higher value to increase the timing between repeating (do not use 00).

File sector 7, relative byte A6H – delay before repeat
Change: 30 to a higher value to increase the delay before repeat (00 is maximum).
000	00		(not available)
001	01		BREAK or CTRLA
002	02		CTRLB
003	03		CTRLC
004	04		CTRLD
005	05		CTRLE
006	06		CTRLF
007	07		CTRLG
008	08		 or CTRLH
009	09		 or CTRLI
010	0A		 or CTRLJ
011	0B		CTRLK (MAX-80)
012	0C		CTRLL
013	0D		ENTER or CTRLM
014	0E		CTRLN
015	0F		CTRLO
016	10		CTRLP
017	11		CTRLQ
018	12		CTRLR
019	13		CTRLS
020	14		CTRLT
021	15		CTRLU
022	16		CTRLV
023	17		CTRLW
024	18		SHIFT or CTRLX
025	19		SHIFT or CTRLY
026	1A		SHIFT (not later MODEL I and not MODEL III) or CTRLZ
027	1B		SHIFT or CTRL;
028	1C		CTRL,
029	1D		CTRL
030	1E		CTRL.
031	1F		CLEAR or CTRL/
032	20		SPACEBAR
033	21		!
034	22		"
035	23		#
036	24		$
037	25		%
038	26		&
039	27		'
040	28		(
041	29)
042	2A		*
043	2B		+
044	2C		,
045	2D		
046	2E		.
047	2F		/

048	30		0
049	31		1
050	32		2
051	33		3
052	34		4
053	35		5
054	36		6
055	37		7
056	38		8
057	39		9
058	3A		:
059	3B		;
060	3C		<
061	3D		=
062	3E		>
063	3F		?
064	40		@
065	41		A
066	42		B
067	43		C
068	44		D
069	45		E
070	46		F
071	47		G
072	48		H
073	49		I
074	4A		J
075	4B		K
076	4C		L
077	4D		M
078	4E		N
079	4F		O
080	50		P
081	51		Q
082	52		R
083	53		S
084	54		T
085	55		U
086	56		V
087	57		W
088	58		X
089	59		Y
090	5A		Z
091	5B		[(MAX-80), (others the key)
092	5C		\ (MAX-80), (MODEL 4 or ESOTERIC default F1)
093	5D] (MAX-80), (MODEL 4 or ESOTERIC default F2)
094	5E		^ (MAX-80), (MODEL 4 or ESOTERIC default F3)
095	5F		_ (MAX-80)

096	60		` (SHIFT@)
097	61		a
098	62		b
099	63		c
100	64		d
101	65		e
102	66		f
103	67		g
104	68		h
105	69		i
106	6A		j
107	6B		k
108	6C		l
109	6D		m
110	6E		n
111	6F		o
112	79		p
113	71		q
114	72		r
115	73		s
116	74		t
117	75		u
118	76		v
119	77		w
120	78		x
121	79		y
122	7A		z
123	7B		{ (MAX-80), (MODEL 4 or ESOTERIC default F4 [RIGHTSHIFTF1])
124	7C		| (MAX-80), (MODEL 4 or ESOTERIC default F5 [RIGHTSHIFTF2])
125	7D		} (MAX-80), (MODEL 4 or ESOTERIC default F6 [RIGHTSHIFTF3])
126	7E		~ (MAX-80)
127	7F		± (MAX-80)

Appendix A
Key Codes

DEC	HEX		KEY(s)

Appendix A
Key Codes

DEC	HEX		KEY(s)

Page 226
Page 227
128	80		ALT@					(see note at bottom of page)
129	81		ALTA or ALTCTRLBREAK	(see note at bottom of page)
130	82		ALTB
131	83		ALTC
132	84		ALTD
133	85		ALTE
134	86		ALTF
135	87		ALTG
136	88		ALTH or ALTCTRL
137	89		ALTI or ALTCTRL
138	8A		ALTJ or ALTCTRL
139	8B		ALTK (MAX-80 ALTCTRL
140	8C		ALTL
141	8D		ALTM or ALTCTRLENTER
142	8E		ALTN
143	8F		ALTO
144	90		ALTP
145	91		ALTQ
146	92		ALTR
147	93		ALTS
148	94		ALTT
149	95		ALTU
150	96		ALTV
151	97		ALTW
152	98		ALTX, (MODEL 4 and ESOTERIC ALTCTRLLEFTSHIFT)
153	99		ALTY, (MODEL 4 and ESOTERIC ALTCTRLLEFTSHIFT)
154	9A		ALTZ, (MODEL 4 and ESOTERIC ALTCTRLLEFTSHIFT)
155	9B		(MAX-80 ALT[), (MODEL 4 and ESOTERIC ALTCTRLLEFTSHIFT)
156	9C		(MAX-80 ALT\)
157	9D		(MAX-80 ALT])
158	9E		(MAX-80 ALT^)
159	9F		(MAX-80 ALT_)
160	A0		ALTCTRLSPACEBAR or ALTSHIFT@
161	A1		ALTCTRL! or ALTa
162	A2		ALTCTRL" or ALTb
163	A3		ALTCTRL# or ALTc
164	A4		ALTCTRL$ or ALTd
165	A5		ALTCTRL% or ALTe
166	A6		ALTCTRL& or ALTf
167	A7		ALTCTRL' or ALTg
168	A8		ALTCTRL(or ALTh
169	A9		ALTCTRL) or ALTi
170	AA		ALTCTRL* or ALTj
171	AB		ALTCTRL+ or ALTk
172	AC		ALTCTRL, or ALTl
173	AD		ALTCTRL or ALTm
174	AE		ALTCTRL. or ALTn
175	AF		ALTCTRL/ or ALTo
NOTE:	ALT is the CLEAR key after pressing LEFTSHIFT•F2 (MODEL 4 and ESOTERIC), SHIFT•F2 (MAX-80). CAPS mode is considered. ALTCTRL is the CLEAR key after pressing LEFTSHIFT•F3 (MODEL 4 and ESOTERIC), SHIFT•F3 (MAX-80), and disregards the CAPS mode.

176	B0		ALTCTRL0 or ALTp
177	B1		ALTCTRL1 or ALTq
178	B2		ALTCTRL2 or ALTr
179	B3		ALTCTRL3 or ALTs
180	B4		ALTCTRL4 or ALTt
181	B5		ALTCTRL5 or ALTu
182	B6		ALTCTRL6 or ALTv
183	B7		ALTCTRL7 or ALTw
184	B8		ALTCTRL8 or ALTx
185	B9		ALTCTRL9 or ALTy
186	BA		ALTCTRL: or ALTz
187	BB		ALTCTRL;
188	BC		ALTCTRL<
189	BD		ALTCTRL=
190	BE		ALTCTRL>
191	BF		ALTCTRL?
192	C0		ALTCTRLSHIFT@
193	C1		ALTCTRLSHIFTA
194	C2		ALTCTRLSHIFTB
195	C3		ALTCTRLSHIFTC
196	C4		ALTCTRLSHIFTD
197	C5		ALTCTRLSHIFTE
198	C6		ALTCTRLSHIFTF
199	C7		ALTCTRLSHIFTG
200	C8		ALTCTRLSHIFTH
201	C9		ALTCTRLSHIFTI
202	CA		ALTCTRLSHIFTJ
203	CB		ALTCTRLSHIFTK
204	CC		ALTCTRLSHIFTL
205	CD		ALTCTRLSHIFTM
206	CE		ALTCTRLSHIFTN
207	CF		ALTCTRLSHIFTO
208	D0		ALTCTRLSHIFTP
209	D1		ALTCTRLSHIFTQ
210	D2		ALTCTRLSHIFTR
211	D3		ALTCTRLSHIFTS
212	D4		ALTCTRLSHIFTT
213	D5		ALTCTRLSHIFTU
214	D6		ALTCTRLSHIFTV
215	D7		ALTCTRLSHIFTW
216	D8		ALTCTRLSHIFTX
217	D9		ALTCTRLSHIFTY
218	DA		ALTCTRLSHIFTZ
219	DB		ALTCTRL or ALTCTRLCTRL+
220	DC		ALTCTRLCTRL<
221	DD		ALTCTRLCTRL=
222	DE		ALTCTRLCTRL>
223	DF		ALTCTRLCTRL?

224	E0		ALTCTRL@
225	E1		ALTCTRLa
226	E2		ALTCTRLb
227	E3		ALTCTRLc
228	E4		ALTCTRLd
229	E5		ALTCTRLe
230	E6		ALTCTRLf
231	E7		ALTCTRLg
232	E8		ALTCTRLh
233	E9		ALTCTRLi
234	EA		ALTCTRLj
235	EB		ALTCTRLk
236	EC		ALTCTRLl
237	ED		ALTCTRLm
238	EE		ALTCTRLn
239	EF		ALTCTRLo
240	F0		ALTCTRLp
241	F1		ALTCTRLq
242	F2		ALTCTRLr
243	F3		ALTCTRLs
244	F4		ALTCTRLt
245	F5		ALTCTRLu
246	F6		ALTCTRLv
247	F7		ALTCTRLw
248	F8		ALTCTRLx
249	F9		ALTCTRLy
250	FA		ALTCTRLz
251	FB		ALTCTRLCTRL; (MAX-80 ALTCTRL{)
252	FC		ALTCTRLCTRL, (MAX-80 ALTCTRL|)
253	FD		ALTCTRLCTRL (MAX-80 ALTCTRL})
254	FE		ALTCTRLCTRL. (MAX-80 ALTCTRL~)
255	FF		ALTCTRLCTRL/ (MAX-80 ALTCTRL_)

Appendix A
Key Codes MAX-80, Model 4, and ESOTERIC

DEC	HEX		KEY(s)

Appendix A
Key Codes MAX-80, Model 4, and ESOTERIC

DEC	HEX		KEY(s)

10000 '"SQRSUM/BAS
10100 CLS
10200 CLEAR 600
10300 DEFSTR B
10400 DEFINT C - Y
10500 RR = &F800
10600 IF PEEK(3) = 23 THEN RR = &3C00:IF PEEK(4) = 64 THEN CMD "V80"
10700 B0 = CHR$(017) + CHR$(066) + CHR$(0) + CHR$(025) + CHR$(229) + CHR$(058) +
 CHR$(003) + CHR$(0) + CHR$(254) + CHR$(023) + CHR$(062) + CHR$(004) + CHR
 $(196) + CHR$(094) + CHR$(008) + CHR$(204) + CHR$(213) + CHR$(068) + CHR$(
 225) + CHR$(243)
10800 B1 = CHR$(024) + CHR$(048) + CHR$(017) + CHR$(045) + CHR$(0) + CHR$(025) +
 CHR$(229) + CHR$(058) + CHR$(003) + CHR$(0) + CHR$(254) + CHR$(023) + CHR
 $(196) + CHR$(009) + CHR$(027) + CHR$(204) + CHR$(009) + CHR$(009) + CHR$(
 227) + CHR$(017)
10900 B2 = CHR$(024) + CHR$(0) + CHR$(235) + CHR$(025) + CHR$(193) + CHR$(113) +
 CHR$(035) + CHR$(112) + CHR$(058) + CHR$(003) + CHR$(0) + CHR$(254) + CHR
 $(023) + CHR$(062) + CHR$(004) + CHR$(194) + CHR$(113) + CHR$(008) + CHR$(
 195) + CHR$(210)
11000 B3 = CHR$(068) + CHR$(0) + CHR$(049) + CHR$(050) + CHR$(051) + CHR$(052) +
 CHR$(010) + CHR$(043) + CHR$(053) + CHR$(192) + CHR$(054) + CHR$(010) + C
 HR$(001) + CHR$(251) + CHR$(255) + CHR$(009) + CHR$(229) + CHR$(221) + CHR
 $(225) + CHR$(058)
11100 B4 = CHR$(003) + CHR$(0) + CHR$(254) + CHR$(023) + CHR$(032) + CHR$(004) +
 CHR$(058) + CHR$(090) + CHR$(0) + CHR$(245) + CHR$(017) + CHR$(0) + CHR$(
 0) + CHR$(001) + CHR$(032) + CHR$(004) + CHR$(126) + CHR$(035) + CHR$(007)
 + CHR$(056)
11200 B5 = CHR$(056) + CHR$(032) + CHR$(028) + CHR$(235) + CHR$(229) + CHR$(205)
 + CHR$(017) + CHR$(066) + CHR$(126) + CHR$(113) + CHR$(018) + CHR$(225) +
 CHR$(035) + CHR$(019) + CHR$(016) + CHR$(244) + CHR$(005) + CHR$(221) + C
 HR$(112) + CHR$(0)
11300 B6 = CHR$(241) + CHR$(050) + CHR$(090) + CHR$(0) + CHR$(211) + CHR$(132) +
 CHR$(042) + CHR$(072) + CHR$(064) + CHR$(024) + CHR$(022) + CHR$(229) + C
 HR$(205) + CHR$(245) + CHR$(008) + CHR$(225) + CHR$(119) + CHR$(121) + CHR
 $(229) + CHR$(205)
11400 B7 = CHR$(250) + CHR$(008) + CHR$(225) + CHR$(035) + CHR$(016) + CHR$(241)
 + CHR$(005) + CHR$(221) + CHR$(112) + CHR$(0) + CHR$(042) + CHR$(083) + C
 HR$(018) + CHR$(030) + CHR$(001) + CHR$(123) + CHR$(233) + CHR$(032) + CHR
 $(022) + CHR$(235)
11500 B8 = CHR$(229) + CHR$(205) + CHR$(017) + CHR$(066) + CHR$(026) + CHR$(119)
 + CHR$(225) + CHR$(035) + CHR$(019) + CHR$(016) + CHR$(245) + CHR$(221) +
 CHR$(112) + CHR$(0) + CHR$(241) + CHR$(050) + CHR$(090) + CHR$(0) + CHR$(
 211) + CHR$(132)
11600 B9 = CHR$(201) + CHR$(126) + CHR$(229) + CHR$(205) + CHR$(250) + CHR$(008)
 + CHR$(225) + CHR$(035) + CHR$(016) + CHR$(247) + CHR$(221) + CHR$(112) +
 CHR$(0) + CHR$(201)
11700 BB = B0 + B1 + B2 + B3 + B4 + B5 + B6 + B7 + B8 + B9
11800 LABEL "Length"
11900 B = "0123456789"
12000 N = 0
12100 L = 0
12200 ON STOP GOTO 0
12300 INPUT !0, 0, #1, 95, USING B, "Number of squares per side (3-9) ";N
12400 IF N < 3 OR N > 9 THEN "Length"
12500 DIM H(N), V(N), M(N * N), I(N * N)
12600 LABEL "Draw"
12700 CLS
12800 S = 2 * INT(67 / N)
12900 BU = "####"
13000 A = INT(9 / N)
13100 XL = S * N + 8
13200 'Horizontal lines
13300 FOR X = 10 TO XL - 1
13400 FOR Y = 3 TO A * 6 * N + 3 STEP A * 6
13500 SET(X, Y)
13600 NEXT
13700 NEXT
13800 'Vertical lines
13900 FOR X = 8 TO XL STEP S
14000 FOR Y = 3 TO A * 6 * N + 3
14100 SET(X, Y)
14200 SET(X + 1, Y)
14300 NEXT
14400 NEXT
14500 'Rows
14600 FOR Y = 1 TO N
14700 PRINT !Y * S / 2 + INT(4 - S / 4) - 2, 0, USING BU;Y;
14800 NEXT
14900 'Cols
15000 FOR X = 1 TO N
15100 PRINT !0, X * 2 * A - A + 1, USING "##";X;
15200 NEXT
15300 IF Q = 11 THEN GOSUB "MATRIX"
15400 LABEL "Column"
15500 P = 1
15600 DI = 1
15700 PRINT !0, 22, CHR$(030);
15800 LINE INPUT !0, 22, %Q, LEN(STR$(N)) - 1, 95, USING MID$(B, 4 - LEN(STR$(N)
), N), "Column (X) ";BX
15900 IF Q = 11 THEN "Draw"
16000 IF Q = 2 THEN "Done"
16100 X = VAL(BX)
16200 IF X > N OR X = 0 THEN "Column"
16300 U = POS(0) + LEN(BX) - LEN(STR$(N)) + 1
16400 LABEL "Row"
16500 PRINT !U, 22, CHR$(030);
16600 LINE INPUT !U, 22, %Q, LEN(STR$(N)) - 1, 95, USING MID$(B, 4 - LEN(STR$(N)
), N), ", Row (Y) ";BY
16700 IF Q = 8 THEN "Column"
16800 IF Q = 2 THEN "Done"
16900 Y = VAL(BY)
17000 IF Y > N OR Y = 0 THEN "Row"
17100 E = POS(0) + LEN(BY) - LEN(STR$(N)) + 1
17200 GOSUB "MSPOT"
17300 LABEL "Over"
17400 Q = FRE(B)
17500 DEF USR = WPEEK(VARPTR(BB) + 1) + LEN(B0) + 2
17600 ON STOP GOTO "No beep"
17700 Q = USR (RR + X * S / 2 + INT(4 - S / 4) - 2 + INT(Y * A * 2 - A + 1) * 80
)
17800 LABEL "Value"
17900 PRINT !E, 22, ", Value ";STRING$(4, 95);
18000 INPUT !E + 8, 22, %Q, 1, 95, USING B + "-", BV
18100 IF Q = 13 THEN PRINT !E, 22, ", Value ";STRING$(4, 32);:GOTO "No beep"
18200 IF Q = 8 OR Q = 2 THEN "No beep"'if 8 back to row
18300 IF Q > 0 AND Q < 32 THEN "Value"
18400 BM = ""
18500 LINE INPUT !E + 9, 22, %Q, 3, 95, USING B, BM
18600 IF Q = 8 THEN "Value"
18700 IF Q <> 13 THEN IF Q > 2 AND Q < 32 THEN "Value"
18800 IF BV = "-" THEN M((X - 1) * N + Y) = -VAL(BM) ELSE M((X - 1) * N + Y) = V
 AL(BV) * 10 [LEN(BM) + VAL(BM)
18900 LABEL "No beep"
19000 MN = LEN(B0) + LEN(B1) + LEN(B2) + LEN(B3) + LEN(B4)
19100 MID$(BB, MN, 1) = CHR$(024)
19200 CALL WPEEK(VARPTR(BB) + 1)
19300 MID$(BB, MN, 1) = CHR$(056)
19400 ON STOP GOTO 0
19500 IF Q = 8 AND K => 0 THEN "Row"
19600 LABEL "Done"
19700 IF Q = 2 THEN P = 2
19800 PRINT !0, 23, CHR$(030);
19900 ON P GOSUB "Partial Total", "USER"
20000 FOR K = 1 TO N - 1
20100 IF H(K) <> H(K + 1) OR V(K) <> V(K + 1) THEN EXIT "Column"
20200 NEXT
20300 IF LL <> LR OR LL <> H(K) THEN "Column"
20400 IF P = 2 THEN "Good"
20500 PRINT !0, 22, "Sorting... " CHR$(030);
20600 SORT N * N, * I(1), M(1)
20700 PRINT "Checking ..."
20800 FOR U = 1 TO N * N - 1
20900 IF M(I(U)) = M(I(U + 1)) THEN "Fail"
21000 NEXT
21100 LABEL "Good"
21200 PRINT !0, 23, "Good. <ENTER> = new values, <CLEAR> = size select, or <E> =
 end.";
21300 ON STOP GOTO "END"
21400 LABEL "Wait"
21500 BW = INKEY$
21600 IF BW = CHR$(013) THEN "Column"
21700 IF BW = "E" OR BW = "e" THEN "END"
21800 IF BW <> CHR$(031) THEN "Wait"
21900 CLS
22000 ERASE H(, V(, M(, I(
22100 GOTO "Length"
22200 LABEL "Partial Total"
22300 'init row and col
22400 H(Y) = 0
22500 V(X) = 0
22600 'calc row and col
22700 FOR J = 1 TO N
22800 H(Y) = H(Y) + M((J - 1) * N + Y)
22900 V(X) = V(X) + M((X - 1) * N + J)
23000 NEXT
23100 GOSUB "MSPOT"
23200 IF H(Y) < -999 OR V(X) < -999 OR H(Y) > 9999 OR V(X) > 9999 THEN K = -1:GO
 TO "Over"
23300 GOSUB "SIH"
23400 GOSUB "SIV"
23500 LABEL "Diagonals"
23600 IF P = 2 AND DI = 2 THEN RETURN
23700 'init diags
23800 LR = 0
23900 LL = 0
24000 'calc diags
24100 FOR F = 1 TO N
24200 LR = LR + M((F - 1) * N + F)
24300 LL = LL + M((N - F) * N + F)
24400 NEXT
24500 IF LR < -999 OR LL < -999 OR LR > 9999 OR LL > 9999 THEN K = -1:GOTO "Over
 "
24600 DI = 2
24700 PRINT !XL / 2, A * N * 2 + 2, USING BU;LR;
24800 PRINT !0, A * N * 2 + 2, USING BU;LL;
24900 RETURN
25000 LABEL "SIH"
25100 PRINT !XL / 2 + 1, Y * A * 2 - A + 1, USING "#####";H(Y);
25200 RETURN
25300 LABEL "MSPOT"
25400 PRINT !X * S / 2 + INT(4 - S / 4) - 2, Y * A * 2 - A + 1, USING BU;M((X -
 1) * N + Y);
25500 RETURN
25600 LABEL "SIV"
25700 PRINT !X * S / 2 + INT(4 - S / 4) - 2, A * N * 2 + 2, USING BU;V(X);
25800 RETURN
25900 LABEL "USER"
26000 PRINT !0, 22, CHR$(030)
26100 LINE INPUT !0, 23, #4, 95, USING B + "-", "Starting integer ";BS
26200 U = POS(0) + LEN(BS) - 4
26300 L = VAL(BS)
26400 IF L = 0 THEN BS = "0":PRINT !17, 23, BS;:U = POS(0)
26500 LINE INPUT !U, 23, %Q, 3, 95, USING B + "-", ", Increment ";BI
26600 R = VAL(BI)
26700 IF R = 0 THEN "USER"
26800 IF Q = 8 THEN "USER"
26900 IF N * N * R + L - R > 9999 THEN "USER"'max value
27000 Z = (N * N * N * R + N * R + 2 * N * (L - R)) / 2
27100 IF Z < -999 OR Z > 9999 THEN "USER"'total values
27200 G = N / 2
27300 IF G = N / 2 THEN "EVEN"
27400 Y = 1
27500 O = L
27600 FOR T = 1 TO N
27700 FOR W = 1 TO N
27800 X = W + G
27900 IF X > N THEN X = X - N
28000 M((X - 1) * N + Y) = O
28100 PRINT !X * S / 2 + INT(4 - S / 4) - 2, Y * A * 2 - A + 1, USING BU;O;
28200 Y = Y - 1
28300 IF Y = 0 THEN Y = N
28400 O = O + R
28500 NEXT
28600 G = G - 1
28700 IF G < 0 THEN G = G + N
28800 Y = Y + 2
28900 IF Y > N THEN Y = Y - N
29000 NEXT
29100 GOTO "TOTALS"
29200 LABEL "EVEN"
29300 C = INT(N / 4) = N / 4
29400 O = N * N * R + L - R
29500 FOR Y = 1 TO N
29600 FOR X = 1 TO N
29700 E = 0
29800 IF ABS(N - 2 * Y + 1) = N / 2 THEN E = X:X = N - X + 1
29900 M((X - 1) * N + Y) = O
30000 O = O - R
30100 IF E THEN X = E
30200 NEXT
30300 NEXT
30400 GOSUB "MATRIX"
30500 FOR Y = 1 TO N / 2
30600 IF Y AND 1 THEN FOR W = N / 2 TO 1 STEP -1 ELSE FOR W = 1 TO N
30700 IF Y = W OR Y + W - 1 = N THEN "Skip COL"
30800 GOSUB "ROW swap"
30900 GOSUB "ROW swap"
31000 LABEL "Skip COL"
31100 NEXT
31200 NEXT
31300 D = N
31400 IF C THEN D = N / 2
31500 FOR X = 1 TO N / 2
31600 FOR W = 1 TO D
31700 IF X = W OR X + W - 1 = N THEN "Skip ROW"
31800 GOSUB "COL swap"
31900 IF C THEN GOSUB "COL swap"
32000 LABEL "Skip ROW"
32100 NEXT
32200 IF V(X) <> Z THEN GOSUB "Adjust COL"
32300 NEXT
32400 RETURN
32500 LABEL "MATRIX"
32600 FOR X = 1 TO N
32700 FOR Y = 1 TO N
32800 GOSUB "MSPOT"
32900 NEXT
33000 NEXT
33100 LABEL "TOTALS"
33200 ZERO H(, V(
33300 LL = 0
33400 LR = 0
33500 FOR Y = 1 TO N
33600 FOR X = 1 TO N
33700 H(Y) = H(Y) + M((X - 1) * N + Y)
33800 V(X) = V(X) + M((X - 1) * N + Y)
33900 IF Y = N THEN GOSUB "SIV"
34000 NEXT
34100 GOSUB "SIH"
34200 NEXT
34300 GOTO "Diagonals"
34400 LABEL "ROW swap"
34500 X = W
34600 E = M((X - 1) * N + N - Y + 1) - M((X - 1) * N + Y)
34700 IF H(Y) <> Z THEN T = M((X - 1) * N + Y):M((X - 1) * N + Y) = M((X - 1) *
 N + N - Y + 1):GOSUB "Partial Total":M((X - 1) * N + N - Y + 1) = T:T = Y:
 Y = N - Y + 1:GOSUB "Partial Total":Y = T
34800 W = N - W + 1
34900 RETURN
35000 LABEL "COL swap"
35100 Y = W
35200 E = M((N - X) * N + Y) - M((X - 1) * N + Y)
35300 IF V(X) >= Z THEN IF V(X) + E < Z OR E > 0 THEN "Skip swap"
35400 IF V(X) < Z THEN IF V(X) + E > Z OR E < 0 THEN "Skip swap"
35500 LABEL "DOIT"
35600 T = M((X - 1) * N + Y)
35700 M((X - 1) * N + Y) = M((N - X) * N + Y)
35800 GOSUB "Partial Total"
35900 M((N - X) * N + Y) = T
36000 T = X
36100 X = N - X + 1
36200 GOSUB "Partial Total"
36300 X = T
36400 LABEL "Skip swap"
36500 IF C THEN W = N - W + 1
36600 RETURN
36700 LABEL "Adjust COL"
36800 FOR Y = 1 TO D - 3
36900 IF X = Y OR X + Y - 1 = N THEN "Skip it"
37000 E = M((N - X) * N + Y) - M((X - 1) * N + Y)
37100 F = M((N - X) * N + Y + 1) - M((X - 1) * N + Y + 1)
37200 G = M((N - X) * N + Y + 2) - M((X - 1) * N + Y + 2)
37300 J = M((N - X) * N + Y + 3) - M((X - 1) * N + Y + 3)
37400 IF E + F + V(X) = Z THEN GOSUB "DOIT":GOTO "UP1"
37500 IF E + G + V(X) = Z THEN GOSUB "DOIT":GOTO "UP2"
37600 IF E + J + V(X) = Z THEN GOSUB "DOIT":GOTO "UP3"
37700 IF F + G + V(X) = Z THEN GOSUB "UP1":GOTO "UP1"
37800 IF F + J + V(X) = Z THEN GOSUB "UP1":GOTO "UP2"
37900 IF G + J + V(X) = Z THEN GOSUB "UP2":GOTO "UP1"
38000 IF E + F + G + V(X) = Z THEN GOSUB "DOIT":GOSUB "UP1":GOTO "UP1"
38100 IF E + F + J + V(X) = Z THEN GOSUB "DOIT":GOSUB "UP1":GOTO "UP2"
38200 IF E + G + J + V(X) = Z THEN GOSUB "DOIT":GOSUB "UP2":GOTO "UP1"
38300 IF F + G + J + V(X) = Z THEN GOSUB "UP1":GOSUB "UP1":GOTO "UP1"
38400 LABEL "Skip it"
38500 NEXT
38600 RETURN
38700 LABEL "UP1"
38800 Y = Y + 1
38900 GOTO "DOIT"
39000 LABEL "UP2"
39100 Y = Y + 2
39200 GOTO "DOIT"
39300 LABEL "UP3"
39400 Y = Y + 3
39500 GOTO "DOIT"
39600 LABEL "Fail"
39700 K = I(U) / N - (I(U) / N > INT(I(U) / N))
39800 J = I(U) - N * (K - 1)
39900 W = I(U + 1) / N - (I(U + 1) / N > INT(I(U + 1) / N))
40000 T = I(U + 1) - N * (W - 1)
40100 PRINT !0, 23, "Locations (" RIGHT$(STR$(K), LEN(STR$(K)) - 1)"," RIGHT$(ST
 R$(J), LEN(STR$(J)) - 1)") and (" RIGHT$(STR$(W), LEN(STR$(W)) - 1)"," RIG
 HT$(STR$(T), LEN(STR$(T)) - 1)") are both"M(I(U));
40200 EXIT "Column"
40300 LABEL "END"
40400 ON STOP GOTO 0
40500 CLS

